Toeplitz operators in TQFT via skein theory
HTML articles powered by AMS MathViewer
- by Julien Marché and Thierry Paul PDF
- Trans. Amer. Math. Soc. 367 (2015), 3669-3704 Request permission
Abstract:
Topological quantum field theory associates to a punctured surface $\Sigma$, a level $r$ and colors $c$ in $\{1,\ldots ,r-1\}$ at the marked points a finite dimensional Hermitian space $V_r(\Sigma ,c)$. Curves $\gamma$ on $\Sigma$ act as Hermitian operator $T_r^\gamma$ on these spaces. In the case of the punctured torus and the 4-times punctured sphere, we prove that the matrix elements of $T_r^\gamma$ have an asymptotic expansion in powers of $\frac {1}{r}$ and we identify the two first terms using trace functions on representation spaces of the surface in $\mathrm {SU}_2$. We conjecture a formula for the general case. Then we show that the curve operators are Toeplitz operators on the sphere in the sense that $T_r^{\gamma }=\Pi _r f^\gamma _r\Pi _r$ where $\Pi _r$ is the Toeplitz projector and $f^\gamma _r$ is an explicit function on the sphere which is smooth away from the poles. Using this formula, we show that under some assumptions on the colors associated to the marked points, the sequence $T^\gamma _r$ is a Toeplitz operator in the usual sense with principal symbol equal to the trace function and with subleading term explicitly computed. We use this result and semi-classical analysis in order to compute the asymptotics of matrix elements of the representation of the mapping class group of $\Sigma$ on $V_r(\Sigma ,c)$. We recover in this way the result of Taylor and Woodward on the asymptotics of the quantum 6j-symbols and treat the case of the punctured S-matrix.References
- Jørgen Ellegaard Andersen, Asymptotic faithfulness of the quantum $\textrm {SU}(n)$ representations of the mapping class groups, Ann. of Math. (2) 163 (2006), no. 1, 347–368. MR 2195137, DOI 10.4007/annals.2006.163.347
- Jørgen Ellegaard Andersen, Toeplitz operators and Hitchin’s projectively flat connection, The many facets of geometry, Oxford Univ. Press, Oxford, 2010, pp. 177–209. MR 2681692, DOI 10.1093/acprof:oso/9780199534920.003.0010
- Jørgen Ellegaard Andersen, Hitchin’s connection, Toeplitz operators, and symmetry invariant deformation quantization, Quantum Topol. 3 (2012), no. 3-4, 293–325. MR 2928087, DOI 10.4171/qt/30
- C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995), no. 4, 883–927. MR 1362791, DOI 10.1016/0040-9383(94)00051-4
- A. Bloch, F. Golse, T. Paul, and A. Uribe, Dispersionless Toda and Toeplitz operators, Duke Math. J. 117 (2003), no. 1, 157–196. MR 1962785, DOI 10.1215/S0012-7094-03-11713-5
- Doug Bullock and Józef H. Przytycki, Multiplicative structure of Kauffman bracket skein module quantizations, Proc. Amer. Math. Soc. 128 (2000), no. 3, 923–931. MR 1625701, DOI 10.1090/S0002-9939-99-05043-1
- L. Charles, On the quantization of polygon spaces, Asian J. Math. 14 (2010), no. 1, 109–152. MR 2726596, DOI 10.4310/AJM.2010.v14.n1.a6
- Laurent Charles and Julien Marché, Multicurves and regular functions on the representation variety of a surface in SU(2), Comment. Math. Helv. 87 (2012), no. 2, 409–431. MR 2914854, DOI 10.4171/CMH/258
- L. Charles and J. Marché, Knot state asymptotics I, AJ conjecture and abelian representations, arXiv:1107.1645
- L. Charles and J. Marché, Knot asymptotics II, Witten conjecture and irreducible representations, arXiv:1107.1646
- Michael H. Freedman, Kevin Walker, and Zhenghan Wang, Quantum $\rm SU(2)$ faithfully detects mapping class groups modulo center, Geom. Topol. 6 (2002), 523–539. MR 1943758, DOI 10.2140/gt.2002.6.523
- Răzvan Gelca, On the holomorphic point of view in the theory of quantum knot invariants, J. Geom. Phys. 56 (2006), no. 10, 2163–2176. MR 2241743, DOI 10.1016/j.geomphys.2005.11.012
- Răzvan Gelca and Alejandro Uribe, The Weyl quantization and the quantum group quantization of the moduli space of flat $\rm SU(2)$-connections on the torus are the same, Comm. Math. Phys. 233 (2003), no. 3, 493–512. MR 1962120, DOI 10.1007/s00220-002-0759-3
- William M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986), no. 2, 263–302. MR 846929, DOI 10.1007/BF01389091
- N. J. Hitchin, Flat connections and geometric quantization, Comm. Math. Phys. 131 (1990), no. 2, 347–380. MR 1065677, DOI 10.1007/BF02161419
- Johannes Huebschmann, Poisson geometry of flat connections for $\textrm {SU}(2)$-bundles on surfaces, Math. Z. 221 (1996), no. 2, 243–259. MR 1376296, DOI 10.1007/PL00004249
- Julien Marché and Majid Narimannejad, Some asymptotics of topological quantum field theory via skein theory, Duke Math. J. 141 (2008), no. 3, 573–587. MR 2387432, DOI 10.1215/00127094-2007-006
- J. Marché and T. Paul, Toeplitz operators in TQFT via skein theory, arXiv:1108.0629 and hal-00612888, 2011.
- G. Masbaum and P. Vogel, $3$-valent graphs and the Kauffman bracket, Pacific J. Math. 164 (1994), no. 2, 361–381. MR 1272656, DOI 10.2140/pjm.1994.164.361
- Thierry Paul and Alejandro Uribe, A construction of quasi-modes using coherent states, Ann. Inst. H. Poincaré Phys. Théor. 59 (1993), no. 4, 357–381 (English, with English and French summaries). MR 1254977
- N. Reshetikhin and V. G. Turaev, Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547–597. MR 1091619, DOI 10.1007/BF01239527
- Yuka U. Taylor and Christopher T. Woodward, $6j$ symbols for $U_q(\mathfrak {sl}_2)$ and non-Euclidean tetrahedra, Selecta Math. (N.S.) 11 (2005), no. 3-4, 539–571. MR 2215264, DOI 10.1007/s00029-005-0014-9
- Vladimir G. Turaev, Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. (4) 24 (1991), no. 6, 635–704. MR 1142906, DOI 10.24033/asens.1639
- A. Voros. Thèse. Université d’Orsay, 1977.
- Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351–399. MR 990772, DOI 10.1007/BF01217730
Additional Information
- Julien Marché
- Affiliation: Centre de mathématiques Laurent Schwartz (UMR 7640), Ecole Polytechnique, 91128 Palaiseau, France
- Thierry Paul
- Affiliation: Centre de mathématiques Laurent Schwartz (UMR 7640), Ecole Polytechnique, 91128 Palaiseau, France
- Received by editor(s): November 2, 2012
- Received by editor(s) in revised form: September 17, 2013
- Published electronically: December 4, 2014
- Additional Notes: The first author was supported by the Agence Nationale de la Recherche ANR-08-JCJC-0114-01 and the second is a member of the CNRS
- © Copyright 2014 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 367 (2015), 3669-3704
- MSC (2010): Primary 47B35, 57M27
- DOI: https://doi.org/10.1090/S0002-9947-2014-06322-8
- MathSciNet review: 3314820