Matrix factorizations in higher codimension
HTML articles powered by AMS MathViewer
- by Jesse Burke and Mark E. Walker PDF
- Trans. Amer. Math. Soc. 367 (2015), 3323-3370 Request permission
Abstract:
We observe that there is an equivalence between the singularity category of an affine complete intersection and the homotopy category of matrix factorizations over a related scheme. This relies in part on a theorem of Orlov. Using this equivalence, we give a geometric construction of the ring of cohomology operators, and a generalization of the theory of support varieties, which we call stable support sets. We settle a question of Avramov about which stable support sets can arise for a given complete intersection ring. We also use the equivalence to construct a projective resolution of a module over a complete intersection ring from a matrix factorization, generalizing the well-known result in the hypersurface case.References
- Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6); Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. MR 0354655
- Luchezar L. Avramov, Obstructions to the existence of multiplicative structures on minimal free resolutions, Amer. J. Math. 103 (1981), no. 1, 1–31. MR 601460, DOI 10.2307/2374187
- Luchezar L. Avramov and Ragnar-Olaf Buchweitz, Homological algebra modulo a regular sequence with special attention to codimension two, J. Algebra 230 (2000), no. 1, 24–67. MR 1774757, DOI 10.1006/jabr.1999.7953
- Luchezar L. Avramov and Ragnar-Olaf Buchweitz, Support varieties and cohomology over complete intersections, Invent. Math. 142 (2000), no. 2, 285–318. MR 1794064, DOI 10.1007/s002220000090
- Luchezar L. Avramov and Srikanth B. Iyengar, Constructing modules with prescribed cohomological support, Illinois J. Math. 51 (2007), no. 1, 1–20. MR 2346182
- Luchezar L. Avramov and Alex Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. (3) 85 (2002), no. 2, 393–440. MR 1912056, DOI 10.1112/S0024611502013527
- Luchezar L. Avramov and Li-Chuan Sun, Cohomology operators defined by a deformation, J. Algebra 204 (1998), no. 2, 684–710. MR 1624432, DOI 10.1006/jabr.1997.7317
- Dave Benson, Srikanth B. Iyengar, and Henning Krause, Local cohomology and support for triangulated categories, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 4, 573–619 (English, with English and French summaries). MR 2489634, DOI 10.24033/asens.2076
- Dave Benson, Srikanth B. Iyengar, and Henning Krause, Stratifying triangulated categories, J. Topol. 4 (2011), no. 3, 641–666. MR 2832572, DOI 10.1112/jtopol/jtr017
- Petter Andreas Bergh, On support varieties for modules over complete intersections, Proc. Amer. Math. Soc. 135 (2007), no. 12, 3795–3803. MR 2341929, DOI 10.1090/S0002-9939-07-09009-0
- Ragnar-Olaf Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings. Unpublished manuscript, 1987.
- Ragnar-Olaf Buchweitz, Complete resolutions over complete intersections. Oberwolfach Rep., 8 (2011), no. 1, 543–546. Representation theory of quivers and finite dimensional algebras.
- Jesse Burke and Mark E. Walker, Matrix factorizations over projective schemes, Homology Homotopy Appl. 14 (2012), no. 2, 37–61. MR 3007084, DOI 10.4310/HHA.2012.v14.n2.a3
- Lars Winther Christensen, Gorenstein dimensions, Lecture Notes in Mathematics, vol. 1747, Springer-Verlag, Berlin, 2000. MR 1799866, DOI 10.1007/BFb0103980
- David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64. MR 570778, DOI 10.1090/S0002-9947-1980-0570778-7
- A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II, Inst. Hautes Études Sci. Publ. Math. 17 (1963), 91 (French). MR 163911
- Tor H. Gulliksen, A change of ring theorem with applications to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167–183. MR 364232, DOI 10.7146/math.scand.a-11518
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093, DOI 10.1007/BFb0080482
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- M. Umut Isik, Equivalence of the derived category of a variety with a singularity category. arXiv:1011.1484.
- Henning Krause, The stable derived category of a Noetherian scheme, Compos. Math. 141 (2005), no. 5, 1128–1162. MR 2157133, DOI 10.1112/S0010437X05001375
- Kevin H. Lin and Daniel Pomerleano, Global matrix factorizations, Math. Res. Lett. 20 (2013), no. 1, 91–106. MR 3126725, DOI 10.4310/MRL.2013.v20.n1.a9
- David Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. With a section by G. M. Bergman. MR 0209285, DOI 10.1515/9781400882069
- Dmitri Orlov, Matrix factorizations for nonaffine LG-models, Math. Ann. 353 (2012), no. 1, 95–108. MR 2910782, DOI 10.1007/s00208-011-0676-x
- D. O. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 240–262 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3(246) (2004), 227–248. MR 2101296
- D. O. Orlov, Triangulated categories of singularities, and equivalences between Landau-Ginzburg models, Mat. Sb. 197 (2006), no. 12, 117–132 (Russian, with Russian summary); English transl., Sb. Math. 197 (2006), no. 11-12, 1827–1840. MR 2437083, DOI 10.1070/SM2006v197n12ABEH003824
- Dmitri Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser Boston, Boston, MA, 2009, pp. 503–531. MR 2641200, DOI 10.1007/978-0-8176-4747-6_{1}6
- Alexander Polishchuk and Arkady Vaintrob, Matrix factorizations and singularity categories for stacks, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 7, 2609–2642 (English, with English and French summaries). MR 3112502, DOI 10.5802/aif.2788
- Leonid Positselski, Coherent analogues of matrix factorizations and relative singularity categories. arXiv:1102.0261.
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 85–147. MR 0338129
- Ian Shipman, A geometric approach to Orlov’s theorem, Compos. Math. 148 (2012), no. 5, 1365–1389. MR 2982435, DOI 10.1112/S0010437X12000255
- Greg Stevenson, Subcategories of singularity categories via tensor actions, Compos. Math. 150 (2014), no. 2, 229–272. MR 3177268, DOI 10.1112/S0010437X1300746X
- Greg Stevenson, Support theory via actions of tensor triangulated categories, J. Reine Angew. Math. 681 (2013), 219–254. MR 3181496, DOI 10.1515/crelle-2012-0025
- Oana Veliche, Gorenstein projective dimension for complexes, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1257–1283. MR 2187653, DOI 10.1090/S0002-9947-05-03771-2
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
Additional Information
- Jesse Burke
- Affiliation: Department of Mathematics, Universität Bielefeld, 33501 Bielefeld, Germany
- Email: jburke@math.uni-bielefeld.de
- Mark E. Walker
- Affiliation: Department of Mathematics, University of Nebraska, Lincoln, Nebraska 68588
- Email: mwalker5@math.unl.edu
- Received by editor(s): November 20, 2012
- Received by editor(s) in revised form: May 2, 2013
- Published electronically: January 20, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 367 (2015), 3323-3370
- MSC (2010): Primary 13D02, 14F05, 13D09
- DOI: https://doi.org/10.1090/S0002-9947-2015-06323-5
- MathSciNet review: 3314810