Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Local invariants of isogenous elliptic curves
HTML articles powered by AMS MathViewer

by Tim Dokchitser and Vladimir Dokchitser PDF
Trans. Amer. Math. Soc. 367 (2015), 4339-4358 Request permission

Abstract:

We investigate how various invariants of elliptic curves, such as the discriminant, Kodaira type, Tamagawa number and real and complex periods, change under an isogeny of prime degree $p$. For elliptic curves over $l$-adic fields, the classification is almost complete (the exception is wild potentially supersingular reduction when $l=p$), and is summarised in a table.
References
  • B. J. Birch, Conjectures concerning elliptic curves, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 106–112. MR 0174558
  • K. ÄŚesnaviÄŤius, The $p$-parity conjecture for elliptic curves with a $p$-isogeny, 2012, arxiv: 1207.0431, to appear in J. Reine Angew. Math.
  • John Coates, Elliptic curves with complex multiplication and Iwasawa theory, Bull. London Math. Soc. 23 (1991), no. 4, 321–350. MR 1125859, DOI 10.1112/blms/23.4.321
  • David A. Cox, Primes of the form $x^2 + ny^2$, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. Fermat, class field theory and complex multiplication. MR 1028322
  • Fred Diamond and John Im, Modular forms and modular curves, Seminar on Fermat’s Last Theorem (Toronto, ON, 1993–1994) CMS Conf. Proc., vol. 17, Amer. Math. Soc., Providence, RI, 1995, pp. 39–133. MR 1357209
  • Tim Dokchitser and Vladimir Dokchitser, Parity of ranks for elliptic curves with a cyclic isogeny, J. Number Theory 128 (2008), no. 3, 662–679. MR 2389862, DOI 10.1016/j.jnt.2007.02.008
  • Tim Dokchitser and Vladimir Dokchitser, On the Birch-Swinnerton-Dyer quotients modulo squares, Ann. of Math. (2) 172 (2010), no. 1, 567–596. MR 2680426, DOI 10.4007/annals.2010.172.567
  • T. Dokchitser and V. Dokchitser, Growth of $\text {\eightcyr \cyracc {Sh}}$ in towers for isogenous curves, preprint, 2013, arxiv:1301.4257.
  • Vladimir Dokchitser, Root numbers of non-abelian twists of elliptic curves, Proc. London Math. Soc. (3) 91 (2005), no. 2, 300–324. With an appendix by Tom Fisher. MR 2167089, DOI 10.1112/S0024611505015261
  • Basil Gordon and Dale Sinor, Multiplicative properties of $\eta$-products, Number theory, Madras 1987, Lecture Notes in Math., vol. 1395, Springer, Berlin, 1989, pp. 173–200. MR 1019331, DOI 10.1007/BFb0086404
  • Nicholas M. Katz, $p$-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973, pp. 69–190. MR 0447119
  • Stefan Keil, Examples of non-simple abelian surfaces over the rationals with non-square order Tate-Shafarevich group, J. Number Theory 144 (2014), 25–69. MR 3239151, DOI 10.1016/j.jnt.2014.04.018
  • A. A. Klyachko, Modular forms and representations of symmetric groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 116 (1982), 74–85, 162 (Russian). Integral lattices and finite linear groups. MR 687842
  • K. Kramer and J. Tunnell, Elliptic curves and local $\varepsilon$-factors, Compositio Math. 46 (1982), no. 3, 307–352. MR 664648
  • Alain Kraus, Sur le dĂ©faut de semi-stabilitĂ© des courbes elliptiques Ă  rĂ©duction additive, Manuscripta Math. 69 (1990), no. 4, 353–385 (French, with English summary). MR 1080288, DOI 10.1007/BF02567933
  • Dino Lorenzini, Models of curves and wild ramification, Pure Appl. Math. Q. 6 (2010), no. 1, Special Issue: In honor of John Tate., 41–82. MR 2591187, DOI 10.4310/PAMQ.2010.v6.n1.a3
  • Morris Newman, Construction and application of a class of modular functions. II, Proc. London Math. Soc. (3) 9 (1959), 373–387. MR 107629, DOI 10.1112/plms/s3-9.3.373
  • Edward F. Schaefer, Class groups and Selmer groups, J. Number Theory 56 (1996), no. 1, 79–114. MR 1370197, DOI 10.1006/jnth.1996.0006
  • Jean-Pierre Serre, Abelian $l$-adic representations and elliptic curves, 2nd ed., Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989. With the collaboration of Willem Kuyk and John Labute. MR 1043865
  • Jean-Pierre Serre, PropriĂ©tĂ©s galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 387283, DOI 10.1007/BF01405086
  • Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517. MR 236190, DOI 10.2307/1970722
  • Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
  • Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368, DOI 10.1007/978-1-4612-0851-8
  • John Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, SĂ©minaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1995, pp. Exp. No. 306, 415–440. MR 1610977
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11G07, 11G05, 11G40
  • Retrieve articles in all journals with MSC (2010): 11G07, 11G05, 11G40
Additional Information
  • Tim Dokchitser
  • Affiliation: Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom
  • MR Author ID: 733080
  • Email: tim.dokchitser@bristol.ac.uk
  • Vladimir Dokchitser
  • Affiliation: Department of Pure Mathematics and Mathematical Statistics, Emmanuel College, Cambridge CB2 3AP, United Kingdom
  • Address at time of publication: Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
  • MR Author ID: 768165
  • Email: v.dokchitser@dpmms.cam.ac.uk, v.dokchitser@warwick.ac.uk
  • Received by editor(s): January 17, 2013
  • Received by editor(s) in revised form: August 4, 2013
  • Published electronically: October 10, 2014
  • Additional Notes: The first author was supported by a Royal Society University Research Fellowship
  • © Copyright 2014 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Trans. Amer. Math. Soc. 367 (2015), 4339-4358
  • MSC (2010): Primary 11G07; Secondary 11G05, 11G40
  • DOI: https://doi.org/10.1090/S0002-9947-2014-06271-5
  • MathSciNet review: 3324930