Hypocoercivity for linear kinetic equations conserving mass
HTML articles powered by AMS MathViewer
- by Jean Dolbeault, Clément Mouhot and Christian Schmeiser PDF
- Trans. Amer. Math. Soc. 367 (2015), 3807-3828 Request permission
Abstract:
We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed.References
- Dominique Bakry, Franck Barthe, Patrick Cattiaux, and Arnaud Guillin, A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case, Electron. Commun. Probab. 13 (2008), 60–66. MR 2386063, DOI 10.1214/ECP.v13-1352
- Adrien Blanchet, Matteo Bonforte, Jean Dolbeault, Gabriele Grillo, and Juan-Luis Vázquez, Hardy-Poincaré inequalities and applications to nonlinear diffusions, C. R. Math. Acad. Sci. Paris 344 (2007), no. 7, 431–436 (English, with English and French summaries). MR 2320246, DOI 10.1016/j.crma.2007.01.011
- Adrien Blanchet, Matteo Bonforte, Jean Dolbeault, Gabriele Grillo, and Juan Luis Vázquez, Asymptotics of the fast diffusion equation via entropy estimates, Arch. Ration. Mech. Anal. 191 (2009), no. 2, 347–385. MR 2481073, DOI 10.1007/s00205-008-0155-z
- M. Bonforte, J. Dolbeault, G. Grillo, and J. L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proc. Natl. Acad. Sci. USA 107 (2010), no. 38, 16459–16464. MR 2726546, DOI 10.1073/pnas.1003972107
- Maria J. Cáceres, José A. Carrillo, and Thierry Goudon, Equilibration rate for the linear inhomogeneous relaxation-time Boltzmann equation for charged particles, Comm. Partial Differential Equations 28 (2003), no. 5-6, 969–989. MR 1986057, DOI 10.1081/PDE-120021182
- Carlo Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena 3 (1949), 83–101 (Italian). MR 0032898
- P. Degond, T. Goudon, and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversible processes, Indiana Univ. Math. J. 49 (2000), no. 3, 1175–1198. MR 1803225, DOI 10.1512/iumj.2000.49.1936
- L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation, Comm. Pure Appl. Math. 54 (2001), no. 1, 1–42. MR 1787105, DOI 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q
- L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math. 159 (2005), no. 2, 245–316. MR 2116276, DOI 10.1007/s00222-004-0389-9
- Jean Dolbeault, Frédéric Hérau, Clément Mouhot, and Christian Schmeiser, Hypocoercivity in linear kinetic equations, In preparation, 2012.
- Jean Dolbeault, Peter Markowich, Dietmar Oelz, and Christian Schmeiser, Non linear diffusions as limit of kinetic equations with relaxation collision kernels, Arch. Ration. Mech. Anal. 186 (2007), no. 1, 133–158. MR 2338354, DOI 10.1007/s00205-007-0049-5
- Jean Dolbeault, Clément Mouhot, and Christian Schmeiser, Hypocoercivity for kinetic equations with linear relaxation terms, C. R. Math. Acad. Sci. Paris 347 (2009), no. 9-10, 511–516 (English, with English and French summaries). MR 2576899, DOI 10.1016/j.crma.2009.02.025
- Klemens Fellner, Lukas Neumann, and Christian Schmeiser, Convergence to global equilibrium for spatially inhomogeneous kinetic models of non-micro-reversible processes, Monatsh. Math. 141 (2004), no. 4, 289–299. MR 2053654, DOI 10.1007/s00605-002-0058-2
- Robert T. Glassey, The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. MR 1379589, DOI 10.1137/1.9781611971477
- Yan Guo, The Landau equation in a periodic box, Comm. Math. Phys. 231 (2002), no. 3, 391–434. MR 1946444, DOI 10.1007/s00220-002-0729-9
- Yan Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math. 55 (2002), no. 9, 1104–1135. MR 1908664, DOI 10.1002/cpa.10040
- Yan Guo, Classical solutions to the Boltzmann equation for molecules with an angular cutoff, Arch. Ration. Mech. Anal. 169 (2003), no. 4, 305–353. MR 2013332, DOI 10.1007/s00205-003-0262-9
- Yan Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math. 153 (2003), no. 3, 593–630. MR 2000470, DOI 10.1007/s00222-003-0301-z
- Yan Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J. 53 (2004), no. 4, 1081–1094. MR 2095473, DOI 10.1512/iumj.2004.53.2574
- F. Hérau and K. Pravda-Starov, Anisotropic hypoelliptic estimates for Landau-type operators, J. Math. Pures Appl. (9) 95 (2011), no. 5, 513–552 (English, with English and French summaries). MR 2786222, DOI 10.1016/j.matpur.2010.11.003
- Frédéric Hérau, Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal. 46 (2006), no. 3-4, 349–359. MR 2215889
- Frédéric Hérau and Francis Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal. 171 (2004), no. 2, 151–218. MR 2034753, DOI 10.1007/s00205-003-0276-3
- Michael Hitrik and Karel Pravda-Starov, Semiclassical hypoelliptic estimates for non-selfadjoint operators with double characteristics, Comm. Partial Differential Equations 35 (2010), no. 6, 988–1028. MR 2753626, DOI 10.1080/03605301003717092
- Shuichi Kawashima, The Boltzmann equation and thirteen moments, Japan J. Appl. Math. 7 (1990), no. 2, 301–320. MR 1057534, DOI 10.1007/BF03167846
- Ming-Yi Lee, Tai-Ping Liu, and Shih-Hsien Yu, Large-time behavior of solutions for the Boltzmann equation with hard potentials, Comm. Math. Phys. 269 (2007), no. 1, 17–37. MR 2274461, DOI 10.1007/s00220-006-0108-z
- Tai-Ping Liu and Shih-Hsien Yu, Boltzmann equation: micro-macro decompositions and positivity of shock profiles, Comm. Math. Phys. 246 (2004), no. 1, 133–179. MR 2044894, DOI 10.1007/s00220-003-1030-2
- Tai-Ping Liu and Shih-Hsien Yu, Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation, Comm. Pure Appl. Math. 60 (2007), no. 3, 295–356. MR 2284213, DOI 10.1002/cpa.20172
- Clément Mouhot and Lukas Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity 19 (2006), no. 4, 969–998. MR 2214953, DOI 10.1088/0951-7715/19/4/011
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- Arne Persson, Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator, Math. Scand. 8 (1960), 143–153. MR 133586, DOI 10.7146/math.scand.a-10602
- Robert M. Strain and Yan Guo, Stability of the relativistic Maxwellian in a collisional plasma, Comm. Math. Phys. 251 (2004), no. 2, 263–320. MR 2100057, DOI 10.1007/s00220-004-1151-2
- Robert M. Strain and Yan Guo, Almost exponential decay near Maxwellian, Comm. Partial Differential Equations 31 (2006), no. 1-3, 417–429. MR 2209761, DOI 10.1080/03605300500361545
- Robert M. Strain and Yan Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal. 187 (2008), no. 2, 287–339. MR 2366140, DOI 10.1007/s00205-007-0067-3
- Seiji Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad. 50 (1974), 179–184. MR 363332
- Cédric Villani, Hypocoercivity, Mem. Amer. Math. Soc. 202 (2009), no. 950, iv+141. MR 2562709, DOI 10.1090/S0065-9266-09-00567-5
- Shih-Hsien Yu, The development of the Green’s function for the Boltzmann equation, J. Stat. Phys. 124 (2006), no. 2-4, 301–320. MR 2264611, DOI 10.1007/s10955-006-9064-4
Additional Information
- Jean Dolbeault
- Affiliation: Ceremade (UMR CNRS no. 7534), Université Paris-Dauphine, Place de Lattre de Tassigny, 75775 Paris Cedex 16, France
- Email: dolbeaul@ceremade.dauphine.fr
- Clément Mouhot
- Affiliation: Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Email: C.Mouhot@dpmms.cam.ac.uk
- Christian Schmeiser
- Affiliation: Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, 1090 Wien, Austria
- Email: Christian.Schmeiser@univie.ac.at
- Received by editor(s): May 10, 2010
- Received by editor(s) in revised form: November 11, 2012
- Published electronically: February 3, 2015
- © Copyright 2015
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 367 (2015), 3807-3828
- MSC (2010): Primary 82C40; Secondary 35B40, 35F10, 35H10, 35H99, 76P05
- DOI: https://doi.org/10.1090/S0002-9947-2015-06012-7
- MathSciNet review: 3324910