A sharp Sobolev trace inequality involving the mean curvature on Riemannian manifolds
HTML articles powered by AMS MathViewer
- by Tianling Jin and Jingang Xiong PDF
- Trans. Amer. Math. Soc. 367 (2015), 6751-6770 Request permission
Abstract:
Let $(M,g)$ be a smooth compact $n$-dimensional Riemannian manifold with smooth boundary $\partial M$ for $n\ge 5$. We prove a trace inequality, that is \[ \|u\|^2_{L^q(\partial M)}\leq S\left (\int _{M}|\nabla _g u|^2 \mathrm {d} v_g+ \frac {n-2}{2}\int _{\partial M}h_g u^2 \mathrm {d} s_g\right )+A\|u\|^2_{L^r(\partial M)} \] for all $u\in H^1(M)$, where $S=\frac {2}{n-2}\omega _n^{-1/(n-1)}$ with $\omega _n$ the volume of the unit sphere in $\mathbb {R}^n$, $q=\frac {2(n-1)}{n-2}$, $r=\frac {2(n-1)}{n}$, $h_g$ is the mean curvature of $\partial M$, $\mathrm {d} v_g$ is the volume form of $(M,g)$, $\mathrm {d} s_g$ is the induced volume form on $\partial M$, and $A$ is a positive constant depending only on $(M, g)$. This inequality is sharp in the sense that $S$ cannot be replaced by any smaller constant, $h$ in general cannot be replaced by any smooth function which is smaller than $h$ at some point on $\partial M$, and $r$ cannot be replaced by any smaller number.References
- Adimurthi and S. L. Yadava, Some remarks on Sobolev type inequalities, Calc. Var. Partial Differential Equations 2 (1994), no. 4, 427–442. MR 1383917, DOI 10.1007/BF01192092
- Thierry Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry 11 (1976), no. 4, 573–598 (French). MR 448404
- Thierry Aubin and Yan Yan Li, On the best Sobolev inequality, J. Math. Pures Appl. (9) 78 (1999), no. 4, 353–387. MR 1696357, DOI 10.1016/S0021-7824(99)00012-4
- A. Bahri and J.-M. Coron, The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal. 95 (1991), no. 1, 106–172. MR 1087949, DOI 10.1016/0022-1236(91)90026-2
- William Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2) 138 (1993), no. 1, 213–242. MR 1230930, DOI 10.2307/2946638
- Haïm Brezis and Elliott H. Lieb, Sobolev inequalities with remainder terms, J. Funct. Anal. 62 (1985), no. 1, 73–86. MR 790771, DOI 10.1016/0022-1236(85)90020-5
- Haïm Brézis and Walter A. Strauss, Semi-linear second-order elliptic equations in $L^{1}$, J. Math. Soc. Japan 25 (1973), 565–590. MR 336050, DOI 10.2969/jmsj/02540565
- Pascal Cherrier, Problèmes de Neumann non linéaires sur les variétés riemanniennes, J. Funct. Anal. 57 (1984), no. 2, 154–206 (French, with English summary). MR 749522, DOI 10.1016/0022-1236(84)90094-6
- Sérgio de Moura Almaraz, Blow-up phenomena for scalar-flat metrics on manifolds with boundary, J. Differential Equations 251 (2011), no. 7, 1813–1840. MR 2823676, DOI 10.1016/j.jde.2011.04.013
- Olivier Druet, The best constants problem in Sobolev inequalities, Math. Ann. 314 (1999), no. 2, 327–346. MR 1697448, DOI 10.1007/s002080050297
- Olivier Druet, Isoperimetric inequalities on compact manifolds, Geom. Dedicata 90 (2002), 217–236. MR 1898162, DOI 10.1023/A:1014977309741
- Olivier Druet and Emmanuel Hebey, The $AB$ program in geometric analysis: sharp Sobolev inequalities and related problems, Mem. Amer. Math. Soc. 160 (2002), no. 761, viii+98. MR 1938183, DOI 10.1090/memo/0761
- José F. Escobar, Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary, Ann. of Math. (2) 136 (1992), no. 1, 1–50. MR 1173925, DOI 10.2307/2946545
- José F. Escobar, Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J. 37 (1988), no. 3, 687–698. MR 962929, DOI 10.1512/iumj.1988.37.37033
- N. Ghoussoub and F. Robert, The effect of curvature on the best constant in the Hardy-Sobolev inequalities, Geom. Funct. Anal. 16 (2006), no. 6, 1201–1245. MR 2276538, DOI 10.1007/s00039-006-0579-2
- Fengbo Hang, Xiaodong Wang, and Xiaodong Yan, An integral equation in conformal geometry, Ann. Inst. H. Poincaré C Anal. Non Linéaire 26 (2009), no. 1, 1–21. MR 2483810, DOI 10.1016/j.anihpc.2007.03.006
- Emmanuel Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, vol. 5, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. MR 1688256
- Emmanuel Hebey, Sharp Sobolev-Poincaré inequalities on compact Riemannian manifolds, Trans. Amer. Math. Soc. 354 (2002), no. 3, 1193–1213. MR 1867378, DOI 10.1090/S0002-9947-01-02913-0
- Emmanuel Hebey and Michel Vaugon, Meilleures constantes dans le théorème d’inclusion de Sobolev, Ann. Inst. H. Poincaré C Anal. Non Linéaire 13 (1996), no. 1, 57–93 (French, with English and French summaries). MR 1373472, DOI 10.1016/S0294-1449(16)30097-X
- Tianling Jin and Jingang Xiong, A fractional Yamabe flow and some applications, to appear in J. Reine Angew. Math. DOI: 10.1515/crelle-2012-0110.
- Tianling Jin and Jingang Xiong, Sharp constants in weighted trace inequalities on Riemannian manifolds, Calc. Var. Partial Differential Equations 48 (2013), no. 3-4, 555–585. MR 3116023, DOI 10.1007/s00526-012-0562-8
- Carlos E. Kenig and Jill Pipher, The Neumann problem for elliptic equations with nonsmooth coefficients, Invent. Math. 113 (1993), no. 3, 447–509. MR 1231834, DOI 10.1007/BF01244315
- Yanyan Li and Tonia Ricciardi, A sharp Sobolev inequality on Riemannian manifolds, Commun. Pure Appl. Anal. 2 (2003), no. 1, 1–31. MR 1961446, DOI 10.1016/S1631-073X(02)02529-3
- Yanyan Li and Meijun Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J. 80 (1995), no. 2, 383–417. MR 1369398, DOI 10.1215/S0012-7094-95-08016-8
- Yanyan Li and Meijun Zhu, Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries, Comm. Pure Appl. Math. 50 (1997), no. 5, 449–487. MR 1443055, DOI 10.1002/(SICI)1097-0312(199705)50:5<449::AID-CPA2>3.3.CO;2-5
- Y. Y. Li and M. Zhu, Sharp Sobolev inequalities involving boundary terms, Geom. Funct. Anal. 8 (1998), no. 1, 59–87. MR 1601846, DOI 10.1007/s000390050048
- Elliott H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), no. 2, 349–374. MR 717827, DOI 10.2307/2007032
Additional Information
- Tianling Jin
- Affiliation: Department of Mathematics, The University of Chicago, 5734 S. University Avenue, Chicago, Illinois 60637
- Email: tj@math.uchicago.edu
- Jingang Xiong
- Affiliation: Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China
- Email: jxiong@math.pku.edu.cn
- Received by editor(s): December 30, 2013
- Received by editor(s) in revised form: March 3, 2014
- Published electronically: November 12, 2014
- Additional Notes: The second author was supported in part by the First Class Postdoctoral Science Foundation of China (No. 2012M520002).
- © Copyright 2014 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 367 (2015), 6751-6770
- MSC (2010): Primary 46E35
- DOI: https://doi.org/10.1090/S0002-9947-2014-06429-5
- MathSciNet review: 3356953