Additive decompositions of sets with restricted prime factors
Authors:
Christian Elsholtz and Adam J. Harper
Journal:
Trans. Amer. Math. Soc. 367 (2015), 7403-7427
MSC (2010):
Primary 11N25, 11N36, 11P70
DOI:
https://doi.org/10.1090/S0002-9947-2014-06384-8
Published electronically:
November 4, 2014
MathSciNet review:
3378834
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We investigate sumset decompositions of quite general sets with restricted prime factors. We manage to handle certain sets, such as the smooth numbers, even though they have little sieve amenability, and conclude that these sets cannot be written as a ternary sumset. This proves a conjecture by Sárközy. We also clean up and sharpen existing results on sumset decompositions of the prime numbers.
- [1] Noga Alon, Andrew Granville, and Adrián Ubis, The number of sumsets in a finite field, Bull. Lond. Math. Soc. 42 (2010), no. 5, 784–794. MR 2721740, https://doi.org/10.1112/blms/bdq033
- [2] E. S. Croot III and C. Elsholtz, On thin sets of primes expressible as sumsets, Acta Math. Hungar. 106 (2005), no. 3, 197–226. MR 2129526, https://doi.org/10.1007/s10474-005-0014-4
- [3] Cécile Dartyge and András Sárközy, On additive decompositions of the set of primitive roots modulo 𝑝, Monatsh. Math. 169 (2013), no. 3-4, 317–328. MR 3019286, https://doi.org/10.1007/s00605-011-0360-y
- [4] Christian Elsholtz, A remark on Hofmann and Wolke’s additive decompositions of the set of primes, Arch. Math. (Basel) 76 (2001), no. 1, 30–33. MR 1808739, https://doi.org/10.1007/s000130050538
- [5] Christian Elsholtz, The inverse Goldbach problem, Mathematika 48 (2001), no. 1-2, 151–158 (2003). MR 1996367, https://doi.org/10.1112/S0025579300014406
- [6] Christian Elsholtz, Some remarks on the additive structure of the set of primes, Number theory for the millennium, I (Urbana, IL, 2000) A K Peters, Natick, MA, 2002, pp. 419–427. MR 1956238
- [7] C. Elsholtz, Combinatorial Prime Number Theory, Habilitationsschrift, TU Clausthal, 2002.
- [8] Christian Elsholtz, Additive decomposability of multiplicatively defined sets, Funct. Approx. Comment. Math. 35 (2006), 61–77. MR 2271607, https://doi.org/10.7169/facm/1229442617
- [9] Christian Elsholtz, Multiplicative decomposability of shifted sets, Bull. Lond. Math. Soc. 40 (2008), no. 1, 97–107. MR 2409182, https://doi.org/10.1112/blms/bdm105
- [10] P. Erdős, Problems in number theory and combinatorics, Proceedings of the Sixth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1976) Congress. Numer., XVIII, Utilitas Math., Winnipeg, Man., 1977, pp. 35–58. MR 532690
- [11] P. Erdős, Some problems on number theory, Analytic and elementary number theory (Marseille, 1983) Publ. Math. Orsay, vol. 86, Univ. Paris XI, Orsay, 1986, pp. 53–67. MR 844584
- [12] Paul Erdős and Melvyn B. Nathanson, Sets of natural numbers with no minimal asymptotic bases, Proc. Amer. Math. Soc. 70 (1978), no. 2, 100–102. MR 485761, https://doi.org/10.1090/S0002-9939-1978-0485761-6
- [13] E. Fouvry and G. Tenenbaum, Répartition statistique des entiers sans grand facteur premier dans les progressions arithmétiques, Proc. London Math. Soc. (3) 72 (1996), no. 3, 481–514 (French). MR 1376766, https://doi.org/10.1112/plms/s3-72.3.481
- [14] John Friedlander and Henryk Iwaniec, Opera de cribro, American Mathematical Society Colloquium Publications, vol. 57, American Mathematical Society, Providence, RI, 2010. MR 2647984
- [15] P. X. Gallagher, A larger sieve, Acta Arith. 18 (1971), 77–81. MR 291120, https://doi.org/10.4064/aa-18-1-77-81
- [16] A. Granville, K. Soundararajan, Multiplicative number theory, course notes, 2011.
- [17] Ben Green and Adam J. Harper, Inverse questions for the large sieve, Geom. Funct. Anal. 24 (2014), no. 4, 1167–1203. MR 3248483, https://doi.org/10.1007/s00039-014-0288-1
- [18] Katalin Gyarmati, Sergei Konyagin, and András Sárközy, On the reducibility of large sets of residues modulo 𝑝, J. Number Theory 133 (2013), no. 7, 2374–2397. MR 3035969, https://doi.org/10.1016/j.jnt.2013.01.002
- [19] A. J. Harper, Bombieri-Vinogradov and Barban-Davenport-Halberstam type theorems for smooth numbers, Preprint, arXiv:1208.5992.
- [20] Adolf Hildebrand, Quantitative mean value theorems for nonnegative multiplicative functions. II, Acta Arith. 48 (1987), no. 3, 209–260. MR 921088, https://doi.org/10.4064/aa-48-3-209-260
- [21] Alfred Hofmann and Dieter Wolke, On additive decompositions of the set of primes, Arch. Math. (Basel) 67 (1996), no. 5, 379–382. MR 1411992, https://doi.org/10.1007/BF01189097
- [22] Bernhard Hornfeck, Ein Satz über die Primzahlmenge, Math. Z. 60 (1954), 271–273 (German). MR 64072, https://doi.org/10.1007/BF01187376
- [23] W. B. Laffer and H. B. Mann, Decomposition of sets of group elements, Pacific J. Math. 14 (1964), 547–558. MR 167524
- [24] Henry B. Mann, Addition theorems: The addition theorems of group theory and number theory, Interscience Publishers John Wiley & Sons New York-London-Sydney, 1965. MR 0181626
- [25] Hugh L. Montgomery, The analytic principle of the large sieve, Bull. Amer. Math. Soc. 84 (1978), no. 4, 547–567. MR 466048, https://doi.org/10.1090/S0002-9904-1978-14497-8
- [26] Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR 2378655
- [27] H.-H. Ostmann, Additive Zahlentheorie, 2 volumes, Springer-Verlag, Berlin-Heidelberg-New York, 1956, reprint 1968.
- [28] Carl Pomerance, A. Sárközy, and C. L. Stewart, On divisors of sums of integers. III, Pacific J. Math. 133 (1988), no. 2, 363–379. MR 941928
- [29] Jan-Christoph Puchta, On additive decompositions of the set of primes, Arch. Math. (Basel) 78 (2002), no. 1, 24–25. MR 1887312, https://doi.org/10.1007/s00013-002-8212-6
- [30] Imre Z. Ruzsa, Sumsets and structure, Combinatorial number theory and additive group theory, Adv. Courses Math. CRM Barcelona, Birkhäuser Verlag, Basel, 2009, pp. 87–210. MR 2522038, https://doi.org/10.1007/978-3-7643-8962-8
- [31] A. Sárközi, Über totalprimitive Folgen, Acta Arith. 8 (1962/63), 21–31. MR 146164, https://doi.org/10.4064/aa-8-1-21-31
- [32] A. Sárközi, Über reduzible Folgen, Acta Arith. 10 (1964/65), 399–408 (German). MR 179147, https://doi.org/10.4064/aa-10-4-399-408
- [33] András Sárközy, Unsolved problems in number theory, Period. Math. Hungar. 42 (2001), no. 1-2, 17–35. MR 1832691, https://doi.org/10.1023/A:1015236305093
- [34] András Sárközy, On additive decompositions of the set of quadratic residues modulo 𝑝, Acta Arith. 155 (2012), no. 1, 41–51. MR 2982426, https://doi.org/10.4064/aa155-1-4
- [35] András Sárközy and Endre Szemerédi, On the sequence of squares, Mat. Lapok 16 (1965), 76–85 (Hungarian). MR 201410
- [36] I. D. Shkredov, Sumsets in quadratic residues, Acta Arith. 164 (2014), no. 3, 221–243. MR 3238115, https://doi.org/10.4064/aa164-3-2
- [37] Igor E. Shparlinski, Additive decompositions of subgroups of finite fields, SIAM J. Discrete Math. 27 (2013), no. 4, 1870–1879. MR 3120762, https://doi.org/10.1137/130924470
- [38] R. Tijdeman, On integers with many small prime factors, Compositio Math. 26 (1973), 319–330. MR 325549
- [39] Eduard Wirsing, Ein metrischer Satz über Mengen ganzer Zahlen, Arch. Math. (Basel) 4 (1953), 392–398 (German). MR 58655, https://doi.org/10.1007/BF01899255
- [40] E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen. II, Acta Math. Acad. Sci. Hungar. 18 (1967), 411–467 (German). MR 223318, https://doi.org/10.1007/BF02280301
- [41] E. Wirsing, Über additive Zerlegungen der Primzahlmenge, lecture at Oberwolfach, an abstract can be found in Tagungsbericht 28/1972. An unpublished written version (1998) exists with the title On the additive decomposability of the set of primes, A Memo.
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11N25, 11N36, 11P70
Retrieve articles in all journals with MSC (2010): 11N25, 11N36, 11P70
Additional Information
Christian Elsholtz
Affiliation:
Institut für Mathematik A, Technische Universität Graz, Steyrergasse 30/II, A-8010 Graz, Austria
Email:
elsholtz@math.tugraz.at
Adam J. Harper
Affiliation:
Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, England
Address at time of publication:
Jesus College, Cambridge CB5 8BL, England
Email:
A.J.Harper@dpmms.cam.ac.uk
DOI:
https://doi.org/10.1090/S0002-9947-2014-06384-8
Received by editor(s):
September 3, 2013
Received by editor(s) in revised form:
January 28, 2014
Published electronically:
November 4, 2014
Additional Notes:
The first author was supported by the Austrian Science Fund (FWF): W1230
The second author was supported by a Doctoral Prize from the Engineering and Physical Sciences Research Council of the United Kingdom, and by a postdoctoral fellowship from the Centre de recherches mathématiques in Montréal. He would also like to thank the Technische Universität Graz for their hospitality during his visit in September 2011, when the research for this paper started.
Article copyright:
© Copyright 2014
American Mathematical Society