Additive decompositions of sets with restricted prime factors
HTML articles powered by AMS MathViewer
- by Christian Elsholtz and Adam J. Harper PDF
- Trans. Amer. Math. Soc. 367 (2015), 7403-7427 Request permission
Abstract:
We investigate sumset decompositions of quite general sets with restricted prime factors. We manage to handle certain sets, such as the smooth numbers, even though they have little sieve amenability, and conclude that these sets cannot be written as a ternary sumset. This proves a conjecture by Sárközy. We also clean up and sharpen existing results on sumset decompositions of the prime numbers.References
- Noga Alon, Andrew Granville, and Adrián Ubis, The number of sumsets in a finite field, Bull. Lond. Math. Soc. 42 (2010), no. 5, 784–794. MR 2721740, DOI 10.1112/blms/bdq033
- E. S. Croot III and C. Elsholtz, On thin sets of primes expressible as sumsets, Acta Math. Hungar. 106 (2005), no. 3, 197–226. MR 2129526, DOI 10.1007/s10474-005-0014-4
- Cécile Dartyge and András Sárközy, On additive decompositions of the set of primitive roots modulo $p$, Monatsh. Math. 169 (2013), no. 3-4, 317–328. MR 3019286, DOI 10.1007/s00605-011-0360-y
- Christian Elsholtz, A remark on Hofmann and Wolke’s additive decompositions of the set of primes, Arch. Math. (Basel) 76 (2001), no. 1, 30–33. MR 1808739, DOI 10.1007/s000130050538
- Christian Elsholtz, The inverse Goldbach problem, Mathematika 48 (2001), no. 1-2, 151–158 (2003). MR 1996367, DOI 10.1112/S0025579300014406
- Christian Elsholtz, Some remarks on the additive structure of the set of primes, Number theory for the millennium, I (Urbana, IL, 2000) A K Peters, Natick, MA, 2002, pp. 419–427. MR 1956238
- C. Elsholtz, Combinatorial Prime Number Theory, Habilitationsschrift, TU Clausthal, 2002.
- Christian Elsholtz, Additive decomposability of multiplicatively defined sets, Funct. Approx. Comment. Math. 35 (2006), 61–77. MR 2271607, DOI 10.7169/facm/1229442617
- Christian Elsholtz, Multiplicative decomposability of shifted sets, Bull. Lond. Math. Soc. 40 (2008), no. 1, 97–107. MR 2409182, DOI 10.1112/blms/bdm105
- P. Erdős, Problems in number theory and combinatorics, Proceedings of the Sixth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1976) Congress. Numer., XVIII, Utilitas Math., Winnipeg, Man., 1977, pp. 35–58. MR 532690
- P. Erdős, Some problems on number theory, Analytic and elementary number theory (Marseille, 1983) Publ. Math. Orsay, vol. 86, Univ. Paris XI, Orsay, 1986, pp. 53–67. MR 844584
- Paul Erdős and Melvyn B. Nathanson, Sets of natural numbers with no minimal asymptotic bases, Proc. Amer. Math. Soc. 70 (1978), no. 2, 100–102. MR 485761, DOI 10.1090/S0002-9939-1978-0485761-6
- E. Fouvry and G. Tenenbaum, Répartition statistique des entiers sans grand facteur premier dans les progressions arithmétiques, Proc. London Math. Soc. (3) 72 (1996), no. 3, 481–514 (French). MR 1376766, DOI 10.1112/plms/s3-72.3.481
- John Friedlander and Henryk Iwaniec, Opera de cribro, American Mathematical Society Colloquium Publications, vol. 57, American Mathematical Society, Providence, RI, 2010. MR 2647984, DOI 10.1090/coll/057
- P. X. Gallagher, A larger sieve, Acta Arith. 18 (1971), 77–81. MR 291120, DOI 10.4064/aa-18-1-77-81
- A. Granville, K. Soundararajan, Multiplicative number theory, course notes, 2011.
- Ben Green and Adam J. Harper, Inverse questions for the large sieve, Geom. Funct. Anal. 24 (2014), no. 4, 1167–1203. MR 3248483, DOI 10.1007/s00039-014-0288-1
- Katalin Gyarmati, Sergei Konyagin, and András Sárközy, On the reducibility of large sets of residues modulo $p$, J. Number Theory 133 (2013), no. 7, 2374–2397. MR 3035969, DOI 10.1016/j.jnt.2013.01.002
- A. J. Harper, Bombieri–Vinogradov and Barban–Davenport–Halberstam type theorems for smooth numbers, Preprint, arXiv:1208.5992.
- Adolf Hildebrand, Quantitative mean value theorems for nonnegative multiplicative functions. II, Acta Arith. 48 (1987), no. 3, 209–260. MR 921088, DOI 10.4064/aa-48-3-209-260
- Alfred Hofmann and Dieter Wolke, On additive decompositions of the set of primes, Arch. Math. (Basel) 67 (1996), no. 5, 379–382. MR 1411992, DOI 10.1007/BF01189097
- Bernhard Hornfeck, Ein Satz über die Primzahlmenge, Math. Z. 60 (1954), 271–273 (German). MR 64072, DOI 10.1007/BF01187376
- W. B. Laffer and H. B. Mann, Decomposition of sets of group elements, Pacific J. Math. 14 (1964), 547–558. MR 167524, DOI 10.2140/pjm.1964.14.547
- Henry B. Mann, Addition theorems: The addition theorems of group theory and number theory, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1965. MR 0181626
- Hugh L. Montgomery, The analytic principle of the large sieve, Bull. Amer. Math. Soc. 84 (1978), no. 4, 547–567. MR 466048, DOI 10.1090/S0002-9904-1978-14497-8
- Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR 2378655
- H.-H. Ostmann, Additive Zahlentheorie, 2 volumes, Springer-Verlag, Berlin-Heidelberg-New York, 1956, reprint 1968.
- Carl Pomerance, A. Sárközy, and C. L. Stewart, On divisors of sums of integers. III, Pacific J. Math. 133 (1988), no. 2, 363–379. MR 941928, DOI 10.2140/pjm.1988.133.363
- Jan-Christoph Puchta, On additive decompositions of the set of primes, Arch. Math. (Basel) 78 (2002), no. 1, 24–25. MR 1887312, DOI 10.1007/s00013-002-8212-6
- Imre Z. Ruzsa, Sumsets and structure, Combinatorial number theory and additive group theory, Adv. Courses Math. CRM Barcelona, Birkhäuser Verlag, Basel, 2009, pp. 87–210. MR 2522038, DOI 10.1007/978-3-7643-8962-8
- A. Sárközi, Über totalprimitive Folgen, Acta Arith. 8 (1962/63), 21–31. MR 146164, DOI 10.4064/aa-8-1-21-31
- A. Sárközi, Über reduzible Folgen, Acta Arith. 10 (1964/65), 399–408 (German). MR 179147, DOI 10.4064/aa-10-4-399-408
- András Sárközy, Unsolved problems in number theory, Period. Math. Hungar. 42 (2001), no. 1-2, 17–35. MR 1832691, DOI 10.1023/A:1015236305093
- András Sárközy, On additive decompositions of the set of quadratic residues modulo $p$, Acta Arith. 155 (2012), no. 1, 41–51. MR 2982426, DOI 10.4064/aa155-1-4
- András Sárközy and Endre Szemerédi, On the sequence of squares, Mat. Lapok 16 (1965), 76–85 (Hungarian). MR 201410
- I. D. Shkredov, Sumsets in quadratic residues, Acta Arith. 164 (2014), no. 3, 221–243. MR 3238115, DOI 10.4064/aa164-3-2
- Igor E. Shparlinski, Additive decompositions of subgroups of finite fields, SIAM J. Discrete Math. 27 (2013), no. 4, 1870–1879. MR 3120762, DOI 10.1137/130924470
- R. Tijdeman, On integers with many small prime factors, Compositio Math. 26 (1973), 319–330. MR 325549
- Eduard Wirsing, Ein metrischer Satz über Mengen ganzer Zahlen, Arch. Math. (Basel) 4 (1953), 392–398 (German). MR 58655, DOI 10.1007/BF01899255
- E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen. II, Acta Math. Acad. Sci. Hungar. 18 (1967), 411–467 (German). MR 223318, DOI 10.1007/BF02280301
- E. Wirsing, Über additive Zerlegungen der Primzahlmenge, lecture at Oberwolfach, an abstract can be found in Tagungsbericht 28/1972. An unpublished written version (1998) exists with the title On the additive decomposability of the set of primes, A Memo.
Additional Information
- Christian Elsholtz
- Affiliation: Institut für Mathematik A, Technische Universität Graz, Steyrergasse 30/II, A-8010 Graz, Austria
- Email: elsholtz@math.tugraz.at
- Adam J. Harper
- Affiliation: Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, England
- Address at time of publication: Jesus College, Cambridge CB5 8BL, England
- MR Author ID: 871455
- Email: A.J.Harper@dpmms.cam.ac.uk
- Received by editor(s): September 3, 2013
- Received by editor(s) in revised form: January 28, 2014
- Published electronically: November 4, 2014
- Additional Notes: The first author was supported by the Austrian Science Fund (FWF): W1230
The second author was supported by a Doctoral Prize from the Engineering and Physical Sciences Research Council of the United Kingdom, and by a postdoctoral fellowship from the Centre de recherches mathématiques in Montréal. He would also like to thank the Technische Universität Graz for their hospitality during his visit in September 2011, when the research for this paper started. - © Copyright 2014 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 367 (2015), 7403-7427
- MSC (2010): Primary 11N25, 11N36, 11P70
- DOI: https://doi.org/10.1090/S0002-9947-2014-06384-8
- MathSciNet review: 3378834