Rank inequalities for the Heegaard Floer homology of Seifert homology spheres
HTML articles powered by AMS MathViewer
- by Çağrı Karakurt and Tye Lidman PDF
- Trans. Amer. Math. Soc. 367 (2015), 7291-7322 Request permission
Abstract:
We establish three rank inequalities for the reduced flavor of Heegaard Floer homology of Seifert fibered integer homology spheres. Combining these inequalities with the known classifications of non-zero degree maps between Seifert fibered spaces, we prove that a map $f:Y’ \to Y$ between Seifert homology spheres yields the inequality $|\deg f|\mathrm {rank} HF_{\mathrm {red}}(Y) \leq \mathrm {rank} HF_{\mathrm {red}}(Y’)$. These inequalities are also applied in conjunction with an algorithm of Némethi to give a method to solve the botany problem for the Heegaard Floer homology of these manifolds.References
- Matthias Beck and Sinai Robins, Computing the continuous discretely, Undergraduate Texts in Mathematics, Springer, New York, 2007. Integer-point enumeration in polyhedra. MR 2271992
- M. B. Can and Ç. Karakurt, Calculating Heegaard-Floer homology by counting lattice points in tetrahedra, Acta Math. Hungar. 144 (2014), no. 1, 43–75. MR 3267169, DOI 10.1007/s10474-014-0432-2
- Ronald Fintushel and Ronald J. Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. (3) 61 (1990), no. 1, 109–137. MR 1051101, DOI 10.1112/plms/s3-61.1.109
- Shinji Fukuhara, Yukio Matsumoto, and Koichi Sakamoto, Casson’s invariant of Seifert homology $3$-spheres, Math. Ann. 287 (1990), no. 2, 275–285. MR 1054569, DOI 10.1007/BF01446893
- Hong Huang, Branched coverings and nonzero degree maps between Seifert manifolds, Proc. Amer. Math. Soc. 130 (2002), no. 8, 2443–2449. MR 1897471, DOI 10.1090/S0002-9939-02-06306-2
- Stanislav Jabuka and Thomas E. Mark, On the Heegaard Floer homology of a surface times a circle, Adv. Math. 218 (2008), no. 3, 728–761. MR 2414320, DOI 10.1016/j.aim.2008.01.009
- Tye Lidman and Ciprian Manolescu, Monopole Floer homology and covering spaces. In preparation.
- Robert Lipshitz and David Treumann, Noncommutative Hodge-to-de Rham spectral sequence and the Heegaard Floer homology of double covers. Preprint, arXiv:1203.2963, 2012.
- Ciprian Manolescu, Peter Ozsváth, and Sucharit Sarkar, A combinatorial description of knot Floer homology, Ann. of Math. (2) 169 (2009), no. 2, 633–660. MR 2480614, DOI 10.4007/annals.2009.169.633
- Ciprian Manolescu, Peter Ozsváth, Zoltán Szabó, and Dylan Thurston, On combinatorial link Floer homology, Geom. Topol. 11 (2007), 2339–2412. MR 2372850, DOI 10.2140/gt.2007.11.2339
- Ciprian Manolescu, Peter Ozsváth, and Dylan Thurston, Grid diagrams and Heegaard Floer invariants. arXiv:0910.0078.
- András Némethi, On the Ozsváth-Szabó invariant of negative definite plumbed 3-manifolds, Geom. Topol. 9 (2005), 991–1042. MR 2140997, DOI 10.2140/gt.2005.9.991
- András Némethi and Liviu I. Nicolaescu, Seiberg-Witten invariants and surface singularities, Geom. Topol. 6 (2002), 269–328. MR 1914570, DOI 10.2140/gt.2002.6.269
- Walter D. Neumann and Frank Raymond, Seifert manifolds, plumbing, $\mu$-invariant and orientation reversing maps, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977) Lecture Notes in Math., vol. 664, Springer, Berlin, 1978, pp. 163–196. MR 518415
- Walter Neumann and Jonathan Wahl, Casson invariant of links of singularities, Comment. Math. Helv. 65 (1990), no. 1, 58–78. MR 1036128, DOI 10.1007/BF02566593
- Peter Ozsváth and Zoltán Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), no. 2, 179–261. MR 1957829, DOI 10.1016/S0001-8708(02)00030-0
- Peter Ozsváth and Zoltán Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003), 185–224. MR 1988284, DOI 10.2140/gt.2003.7.185
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1, 58–116. MR 2065507, DOI 10.1016/j.aim.2003.05.001
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004), no. 3, 1159–1245. MR 2113020, DOI 10.4007/annals.2004.159.1159
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), no. 3, 1027–1158. MR 2113019, DOI 10.4007/annals.2004.159.1027
- Peter Ozsváth and Zoltán Szabó, Holomorphic triangle invariants and the topology of symplectic four-manifolds, Duke Math. J. 121 (2004), no. 1, 1–34. MR 2031164, DOI 10.1215/S0012-7094-04-12111-6
- Yong Wu Rong, Maps between Seifert fibered spaces of infinite $\pi _1$, Pacific J. Math. 160 (1993), no. 1, 143–154. MR 1227509, DOI 10.2140/pjm.1993.160.143
- Yong Wu Rong, Degree one maps of Seifert manifolds and a note on Seifert volume, Topology Appl. 64 (1995), no. 2, 191–200. MR 1340870, DOI 10.1016/0166-8641(94)00108-F
- Sucharit Sarkar and Jiajun Wang, An algorithm for computing some Heegaard Floer homologies, Ann. of Math. (2) 171 (2010), no. 2, 1213–1236. MR 2630063, DOI 10.4007/annals.2010.171.1213
- Nikolai Saveliev, Invariants for homology $3$-spheres, Encyclopaedia of Mathematical Sciences, vol. 140, Springer-Verlag, Berlin, 2002. Low-Dimensional Topology, I. MR 1941324, DOI 10.1007/978-3-662-04705-7
Additional Information
- Çağrı Karakurt
- Affiliation: Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712
- Address at time of publication: Department of Mathematics, Bogazici University, Bebek-Istanbul, Turkey 34342
- Email: cagri.karakurt@boun.edu.tr
- Tye Lidman
- Affiliation: Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712
- MR Author ID: 808881
- Received by editor(s): October 9, 2013
- Published electronically: December 23, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 367 (2015), 7291-7322
- MSC (2010): Primary 57R58, 57M27
- DOI: https://doi.org/10.1090/S0002-9947-2014-06451-9
- MathSciNet review: 3378830