Group-type subfactors and Hadamard matrices
HTML articles powered by AMS MathViewer
- by Richard D. Burstein PDF
- Trans. Amer. Math. Soc. 367 (2015), 6783-6807 Request permission
Abstract:
A hyperfinite $\mathrm {II}_1$ subfactor may be obtained from a symmetric commuting square via iteration of the basic construction. For certain commuting squares constructed from Hadamard matrices, we describe this subfactor as a group-type inclusion $R^H \subset R \rtimes K$, where $H$ and $K$ are finite groups with outer actions on the hyperfinite $\mathrm {II}_1$ factor $R$. We find the group of outer automorphisms generated by $H$ and $K$ and use the method of Bisch and Haagerup to determine the principal and dual principal graphs. In some cases a complete classification is obtained by examining the element of $H^3(H \ast K / \mathrm {Int} R)$ associated with the action.References
- Dietmar Bisch, Paramita Das, and Shamindra Kumar Ghosh, The planar algebra of group-type subfactors, J. Funct. Anal. 257 (2009), no. 1, 20–46. MR 2523334, DOI 10.1016/j.jfa.2009.03.014
- D. Bisch, P. Das, and S. Ghosh, The planar algebra of group-type subfactors with cocycle, Work in progress.
- Dietmar Bisch and Uffe Haagerup, Composition of subfactors: new examples of infinite depth subfactors, Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 3, 329–383. MR 1386923, DOI 10.24033/asens.1742
- Dietmar Bisch, A note on intermediate subfactors, Pacific J. Math. 163 (1994), no. 2, 201–216. MR 1262294, DOI 10.2140/pjm.1994.163.201
- Dietmar Bisch, Bimodules, higher relative commutants and the fusion algebra associated to a subfactor, Operator algebras and their applications (Waterloo, ON, 1994/1995) Fields Inst. Commun., vol. 13, Amer. Math. Soc., Providence, RI, 1997, pp. 13–63. MR 1424954, DOI 10.1007/s002220050137
- Ola Bratteli, Inductive limits of finite dimensional $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 171 (1972), 195–234. MR 312282, DOI 10.1090/S0002-9947-1972-0312282-2
- Dietmar Bisch, Remus Nicoara, and Sorin Popa, Continuous families of hyperfinite subfactors with the same standard invariant, Internat. J. Math. 18 (2007), no. 3, 255–267. MR 2314611, DOI 10.1142/S0129167X07004011
- R. D. Burstein, Hadamard Subfactors of Bisch-Haagerup Type, PhD dissertation, University of California, Berkeley, Department of Mathematics, 2008.
- Remus Nicoara, Subfactors and Hadamard matrices, J. Operator Theory 64 (2010), no. 2, 453–468. MR 2718953
- David E. Evans and Yasuyuki Kawahigashi, Quantum symmetries on operator algebras, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. Oxford Science Publications. MR 1642584
- Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R. Jones, Coxeter graphs and towers of algebras, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989. MR 999799, DOI 10.1007/978-1-4613-9641-3
- K. J. Horadam, Hadamard matrices and their applications, Princeton University Press, Princeton, NJ, 2007. MR 2265694, DOI 10.1515/9781400842902
- Masaki Izumi and Yasuyuki Kawahigashi, Classification of subfactors with the principal graph $D^{(1)}_n$, J. Funct. Anal. 112 (1993), no. 2, 257–286. MR 1213139, DOI 10.1006/jfan.1993.1033
- Vaughan F. R. Jones, Actions of finite groups on the hyperfinite type $\textrm {II}_{1}$ factor, Mem. Amer. Math. Soc. 28 (1980), no. 237, v+70. MR 587749, DOI 10.1090/memo/0237
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. MR 696688, DOI 10.1007/BF01389127
- V. F. R. Jones, Planar algebras. I, arxiv.org, arXiv:9909027 [math.OA]:122 pp, 1999.
- V. Jones and V. S. Sunder, Introduction to subfactors, London Mathematical Society Lecture Note Series, vol. 234, Cambridge University Press, Cambridge, 1997. MR 1473221, DOI 10.1017/CBO9780511566219
- Uma Krishnan and V. S. Sunder, On biunitary permutation matrices and some subfactors of index $9$, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4691–4736. MR 1360226, DOI 10.1090/S0002-9947-96-01669-8
- Zeph A. Landau, Intermediate subfactors, ProQuest LLC, Ann Arbor, MI, 1998. Thesis (Ph.D.)–University of California, Berkeley. MR 2698865
- Phan H. Loi, On automorphisms of subfactors, J. Funct. Anal. 141 (1996), no. 2, 275–293. MR 1418506, DOI 10.1006/jfan.1996.0128
- Adrian Ocneanu, Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, pp. 119–172. MR 996454
- S. Popa, Classification of subfactors: the reduction to commuting squares, Invent. Math. 101 (1990), no. 1, 19–43. MR 1055708, DOI 10.1007/BF01231494
- Sorin Popa, Classification of amenable subfactors of type II, Acta Math. 172 (1994), no. 2, 163–255. MR 1278111, DOI 10.1007/BF02392646
- Anne Louise Svendsen, Automorphisms of subfactors from commuting squares, Trans. Amer. Math. Soc. 356 (2004), no. 6, 2515–2543. MR 2048528, DOI 10.1090/S0002-9947-04-03447-6
Additional Information
- Richard D. Burstein
- Affiliation: Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville, Tennessee 37240
- MR Author ID: 896764
- Email: richard.d.burstein@vanderbilt.edu
- Received by editor(s): November 13, 2009
- Received by editor(s) in revised form: February 9, 2010
- Published electronically: June 11, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 367 (2015), 6783-6807
- MSC (2010): Primary 46L37
- DOI: https://doi.org/10.1090/tran/5314
- MathSciNet review: 3378814