Constant term identities and Poincaré polynomials
HTML articles powered by AMS MathViewer
- by Gyula Károlyi, Alain Lascoux and S. Ole Warnaar PDF
- Trans. Amer. Math. Soc. 367 (2015), 6809-6836 Request permission
Abstract:
In 1982 Macdonald published his now famous constant term conjectures for classical root systems. This paper begins with the almost trivial observation that Macdonald’s constant term identities admit an extra set of free parameters, thereby linking them to Poincaré polynomials. We then exploit these extra degrees of freedom in the case of type $\mathrm {A}$ to give the first proof of Kadell’s orthogonality conjecture—a symmetric function generalisation of the $q$-Dyson conjecture or Zeilberger–Bressoud theorem.
Key ingredients in our proof of Kadell’s orthogonality conjecture are multivariable Lagrange interpolation, the scalar product for Demazure characters and $(0,1)$-matrices.
References
- Noga Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput. 8 (1999), no. 1-2, 7–29. Recent trends in combinatorics (Mátraháza, 1995). MR 1684621, DOI 10.1017/S0963548398003411
- George E. Andrews, Problems and prospects for basic hypergeometric functions, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975, pp. 191–224. MR 0399528
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013
- C. Berge, Principles of combinatorics, Mathematics in Science and Engineering, Vol. 72, Academic Press, New York-London, 1971. Translated from the French. MR 0270922
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR 1890629, DOI 10.1007/978-3-540-89394-3
- D. M. Bressoud and I. P. Goulden, Constant term identities extending the $q$-Dyson theorem, Trans. Amer. Math. Soc. 291 (1985), no. 1, 203–228. MR 797055, DOI 10.1090/S0002-9947-1985-0797055-8
- Richard A. Brualdi and Herbert J. Ryser, Combinatorial matrix theory, Encyclopedia of Mathematics and its Applications, vol. 39, Cambridge University Press, Cambridge, 1991. MR 1130611, DOI 10.1017/CBO9781107325708
- Ivan Cherednik, The Macdonald constant-term conjecture, Internat. Math. Res. Notices 6 (1993), 165–177. MR 1224114, DOI 10.1155/S1073792893000170
- Ivan Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of Math. (2) 141 (1995), no. 1, 191–216. MR 1314036, DOI 10.2307/2118632
- Ivan Cherednik, Double affine Hecke algebras, London Mathematical Society Lecture Note Series, vol. 319, Cambridge University Press, Cambridge, 2005. MR 2133033, DOI 10.1017/CBO9780511546501
- C. Chevalley, Sur certains groupes simples, Tohoku Math. J. (2) 7 (1955), 14–66 (French). MR 73602, DOI 10.2748/tmj/1178245104
- Michel Demazure, Une nouvelle formule des caractères, Bull. Sci. Math. (2) 98 (1974), no. 3, 163–172. MR 430001
- Peter J. Forrester and S. Ole Warnaar, The importance of the Selberg integral, Bull. Amer. Math. Soc. (N.S.) 45 (2008), no. 4, 489–534. MR 2434345, DOI 10.1090/S0273-0979-08-01221-4
- Amy M. Fu and Alain Lascoux, Non-symmetric Cauchy kernels for the classical groups, J. Combin. Theory Ser. A 116 (2009), no. 4, 903–917. MR 2513641, DOI 10.1016/j.jcta.2008.10.007
- George Gasper and Mizan Rahman, Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 96, Cambridge University Press, Cambridge, 2004. With a foreword by Richard Askey. MR 2128719, DOI 10.1017/CBO9780511526251
- Ira M. Gessel and Guoce Xin, A short proof of the Zeilberger-Bressoud $q$-Dyson theorem, Proc. Amer. Math. Soc. 134 (2006), no. 8, 2179–2187. MR 2213689, DOI 10.1090/S0002-9939-06-08224-4
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Bogdan Ion, Nonsymmetric Macdonald polynomials and Demazure characters, Duke Math. J. 116 (2003), no. 2, 299–318. MR 1953294, DOI 10.1215/S0012-7094-03-11624-5
- Kevin W. J. Kadell, Aomoto’s machine and the Dyson constant term identity, Methods Appl. Anal. 5 (1998), no. 4, 335–350. MR 1669871, DOI 10.4310/MAA.1998.v5.n4.a1
- Kevin W. J. Kadell, A Dyson constant term orthogonality relation, J. Combin. Theory Ser. A 89 (2000), no. 2, 291–297. MR 1741011, DOI 10.1006/jcta.1999.2928
- R. N. Karasev and F. V. Petrov, Partitions of nonzero elements of a finite field into pairs, Israel J. Math. 192 (2012), no. 1, 143–156. MR 3004078, DOI 10.1007/s11856-012-0020-5
- Gyula Károlyi, Zoltán Lóránt Nagy, Fedor V. Petrov, and Vladislav Volkov, A new approach to constant term identities and Selberg-type integrals, Adv. Math. 277 (2015), 252–282. MR 3336087, DOI 10.1016/j.aim.2014.09.028
- Gyula Károlyi and Zoltán Lóránt Nagy, A simple proof of the Zeilberger-Bressoud $q$-Dyson theorem, Proc. Amer. Math. Soc. 142 (2014), no. 9, 3007–3011. MR 3223356, DOI 10.1090/S0002-9939-2014-12041-7
- Alain Lascoux, Symmetric functions and combinatorial operators on polynomials, CBMS Regional Conference Series in Mathematics, vol. 99, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2003. MR 2017492, DOI 10.1090/cbms/099
- Alain Lascoux and Marcel-Paul Schützenberger, Keys & standard bases, Invariant theory and tableaux (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 19, Springer, New York, 1990, pp. 125–144. MR 1035493
- MichałLasoń, A generalization of combinatorial Nullstellensatz, Electron. J. Combin. 17 (2010), no. 1, Note 32, 6. MR 2729390
- Lun Lv, Guoce Xin, and Yue Zhou, A family of $q$-Dyson style constant term identities, J. Combin. Theory Ser. A 116 (2009), no. 1, 12–29. MR 2469245, DOI 10.1016/j.jcta.2008.04.002
- I. G. Macdonald, The Poincaré series of a Coxeter group, Math. Ann. 199 (1972), 161–174. MR 322069, DOI 10.1007/BF01431421
- I. G. Macdonald, Some conjectures for root systems, SIAM J. Math. Anal. 13 (1982), no. 6, 988–1007. MR 674768, DOI 10.1137/0513070
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Andrew V. Sills, Disturbing the Dyson conjecture, in a generally GOOD way, J. Combin. Theory Ser. A 113 (2006), no. 7, 1368–1380. MR 2259066, DOI 10.1016/j.jcta.2005.12.005
- Louis Solomon, The orders of the finite Chevalley groups, J. Algebra 3 (1966), 376–393. MR 199275, DOI 10.1016/0021-8693(66)90007-X
- Richard P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997. With a foreword by Gian-Carlo Rota; Corrected reprint of the 1986 original. MR 1442260, DOI 10.1017/CBO9780511805967
- John R. Stembridge, First layer formulas for characters of $\textrm {SL}(n,\textbf {C})$, Trans. Amer. Math. Soc. 299 (1987), no. 1, 319–350. MR 869415, DOI 10.1090/S0002-9947-1987-0869415-X
- John R. Stembridge, On the Poincaré series and cardinalities of finite reflection groups, Proc. Amer. Math. Soc. 126 (1998), no. 11, 3177–3181. MR 1459151, DOI 10.1090/S0002-9939-98-04473-6
- Doron Zeilberger and David M. Bressoud, A proof of Andrews’ $q$-Dyson conjecture, Discrete Math. 54 (1985), no. 2, 201–224. MR 791661, DOI 10.1016/0012-365X(85)90081-0
- Yue Zhou, On Kadell’s two conjectures for the $q$-Dyson product, Electron. J. Combin. 18 (2011), no. 2, Paper 2, 15. MR 2770132
Additional Information
- Gyula Károlyi
- Affiliation: School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia – and – Institute of Mathematics, Eötvös University, Budapest, Hungary
- Alain Lascoux
- Affiliation: CNRS, Institut Gaspard Monge, Université Paris-Est, Marne-la-Vallée, France
- S. Ole Warnaar
- Affiliation: School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia
- MR Author ID: 269674
- Received by editor(s): October 5, 2012
- Received by editor(s) in revised form: February 27, 2013
- Published electronically: June 24, 2015
- Additional Notes: This work was supported by the Australian Research Council and by Hungarian National Scientific Research Funds (OTKA) Grant K100291.
We deeply regret that Alain Lascoux passed away on October 20, 2013 - © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 367 (2015), 6809-6836
- MSC (2010): Primary 05A19, 05E05, 17B22, 20F55
- DOI: https://doi.org/10.1090/tran/6119
- MathSciNet review: 3378815