A $C^*$-algebra approach to complex symmetric operators
HTML articles powered by AMS MathViewer
- by Kunyu Guo, Youqing Ji and Sen Zhu PDF
- Trans. Amer. Math. Soc. 367 (2015), 6903-6942 Request permission
Abstract:
In this paper, certain connections between complex symmetric operators and anti-automorphisms of singly generated $C^*$-algebras are established. This provides a $C^*$-algebra approach to the norm closure problem for complex symmetric operators. For $T\in \mathcal {B(H)}$ satisfying $C^*(T)\cap \mathcal {K(H)}=\{0\}$, we give several characterizations for $T$ to be a norm limit of complex symmetric operators. As applications, we give concrete characterizations for weighted shifts with nonzero weights to be norm limits of complex symmetric operators. In particular, we prove a conjecture of Garcia and Poore. On the other hand, it is proved that an essentially normal operator is a norm limit of complex symmetric operators if and only if it is complex symmetric. We obtain a canonical decomposition for essentially normal operators which are complex symmetric.References
- William Arveson, An invitation to $C^*$-algebras, Graduate Texts in Mathematics, No. 39, Springer-Verlag, New York-Heidelberg, 1976. MR 0512360, DOI 10.1007/978-1-4612-6371-5
- Jeffrey L. Boersema, The range of united $K$-theory, J. Funct. Anal. 235 (2006), no. 2, 701–718. MR 2225467, DOI 10.1016/j.jfa.2005.12.012
- I. Chalendar, E. Fricain, and D. Timotin, On an extremal problem of Garcia and Ross, Oper. Matrices 3 (2009), no. 4, 541–546. MR 2597679, DOI 10.7153/oam-03-31
- Nicolas Chevrot, Emmanuel Fricain, and Dan Timotin, The characteristic function of a complex symmetric contraction, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2877–2886. MR 2317964, DOI 10.1090/S0002-9939-07-08803-X
- Joseph A. Cima, Stephan Ramon Garcia, William T. Ross, and Warren R. Wogen, Truncated Toeplitz operators: spatial isomorphism, unitary equivalence, and similarity, Indiana Univ. Math. J. 59 (2010), no. 2, 595–620. MR 2648079, DOI 10.1512/iumj.2010.59.4097
- Joseph A. Cima, William T. Ross, and Warren R. Wogen, Truncated Toeplitz operators on finite dimensional spaces, Oper. Matrices 2 (2008), no. 3, 357–369. MR 2440673, DOI 10.7153/oam-02-21
- A. Connes, A factor not anti-isomorphic to itself, Ann. of Math. (2) 101 (1975), 536–554. MR 370209, DOI 10.2307/1970940
- Alain Connes, Sur la classification des facteurs de type $\textrm {II}$, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), no. 1, Aii, A13–A15 (French, with English summary). MR 377534
- John B. Conway, A course in functional analysis, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990. MR 1070713
- Kenneth R. Davidson, $C^*$-algebras by example, Fields Institute Monographs, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1402012, DOI 10.1090/fim/006
- Ronald G. Douglas, Banach algebra techniques in operator theory, 2nd ed., Graduate Texts in Mathematics, vol. 179, Springer-Verlag, New York, 1998. MR 1634900, DOI 10.1007/978-1-4612-1656-8
- Jun Shen Fang, Chun-Lan Jiang, and Pei Yuan Wu, Direct sums of irreducible operators, Studia Math. 155 (2003), no. 1, 37–49. MR 1961159, DOI 10.4064/sm155-1-3
- Nathan S. Feldman, Essentially subnormal operators, Proc. Amer. Math. Soc. 127 (1999), no. 4, 1171–1181. MR 1625741, DOI 10.1090/S0002-9939-99-05053-4
- Stephan R. Garcia, Three questions about complex symmetric operators, Integral Equations Operator Theory 72 (2012), no. 1, 3–4. MR 2872603, DOI 10.1007/s00020-011-1931-y
- Stephan Ramon Garcia, Bob Lutz, and Dan Timotin, Two remarks about nilpotent operators of order two, Proc. Amer. Math. Soc. 142 (2014), no. 5, 1749–1756. MR 3168480, DOI 10.1090/S0002-9939-2014-11944-7
- Stephan Ramon Garcia and Daniel E. Poore, On the closure of the complex symmetric operators: compact operators and weighted shifts, J. Funct. Anal. 264 (2013), no. 3, 691–712. MR 3003733, DOI 10.1016/j.jfa.2012.11.009
- Stephan Ramon Garcia and Daniel E. Poore, On the norm closure problem for complex symmetric operators, Proc. Amer. Math. Soc. 141 (2013), no. 2, 549. MR 2996959, DOI 10.1090/S0002-9939-2012-11347-4
- Stephan Ramon Garcia and Mihai Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285–1315. MR 2187654, DOI 10.1090/S0002-9947-05-03742-6
- Stephan Ramon Garcia and Mihai Putinar, Complex symmetric operators and applications. II, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3913–3931. MR 2302518, DOI 10.1090/S0002-9947-07-04213-4
- Stephan Ramon Garcia and William T. Ross, Recent progress on truncated Toeplitz operators, Blaschke products and their applications, Fields Inst. Commun., vol. 65, Springer, New York, 2013, pp. 275–319. MR 3052299, DOI 10.1007/978-1-4614-5341-3_{1}5
- Stephan Ramon Garcia, William T. Ross, and Warren R. Wogen, $C^*$-algebras generated by truncated Toeplitz operators, Concrete operators, spectral theory, operators in harmonic analysis and approximation, Oper. Theory Adv. Appl., vol. 236, Birkhäuser/Springer, Basel, 2014, pp. 181–192. MR 3203060, DOI 10.1007/978-3-0348-0648-0_{1}1
- Stephan Ramon Garcia and James E. Tener, Unitary equivalence of a matrix to its transpose, J. Operator Theory 68 (2012), no. 1, 179–203. MR 2966041
- Stephan Ramon Garcia and Warren R. Wogen, Complex symmetric partial isometries, J. Funct. Anal. 257 (2009), no. 4, 1251–1260. MR 2535469, DOI 10.1016/j.jfa.2009.04.005
- Stephan Ramon Garcia and Warren R. Wogen, Some new classes of complex symmetric operators, Trans. Amer. Math. Soc. 362 (2010), no. 11, 6065–6077. MR 2661508, DOI 10.1090/S0002-9947-2010-05068-8
- T. M. Gilbreath and Warren R. Wogen, Remarks on the structure of complex symmetric operators, Integral Equations Operator Theory 59 (2007), no. 4, 585–590. MR 2370050, DOI 10.1007/s00020-007-1528-7
- Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. MR 675952, DOI 10.1007/978-1-4684-9330-6
- Paul R. Halmos, Linear algebra problem book, The Dolciani Mathematical Expositions, vol. 16, Mathematical Association of America, Washington, DC, 1995. MR 1310775, DOI 10.5948/9781614442127
- Domingo A. Herrero, Approximation of Hilbert space operators. Vol. 1, 2nd ed., Pitman Research Notes in Mathematics Series, vol. 224, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 1088255
- Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
- V. F. R. Jones, A $\textrm {II}_{1}$ factor anti-isomorphic to itself but without involutory antiautomorphisms, Math. Scand. 46 (1980), no. 1, 103–117. MR 585235, DOI 10.7146/math.scand.a-11855
- Laurent Marcoux, On the distance between unitary orbits of weighted shifts, Trans. Amer. Math. Soc. 326 (1991), no. 2, 585–612. MR 1010887, DOI 10.1090/S0002-9947-1991-1010887-9
- Donal P. O’Donovan, Weighted shifts and covariance algebras, Trans. Amer. Math. Soc. 208 (1975), 1–25. MR 385632, DOI 10.1090/S0002-9947-1975-0385632-1
- N. Christopher Phillips, Continuous-trace $C^*$-algebras not isomorphic to their opposite algebras, Internat. J. Math. 12 (2001), no. 3, 263–275. MR 1841515, DOI 10.1142/S0129167X01000642
- N. Christopher Phillips, A simple separable $C^*$-algebra not isomorphic to its opposite algebra, Proc. Amer. Math. Soc. 132 (2004), no. 10, 2997–3005. MR 2063121, DOI 10.1090/S0002-9939-04-07330-7
- Donald Sarason, Algebraic properties of truncated Toeplitz operators, Oper. Matrices 1 (2007), no. 4, 491–526. MR 2363975, DOI 10.7153/oam-01-29
- Nicholas Alexander Sedlock, Properties of truncated Toeplitz operators, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–Washington University in St. Louis. MR 2736740
- N. A. Sedlock, Algebras of truncated Toeplitz operators, Oper. Matrices 5 (2011), no. 2, 309–326. MR 2830601, DOI 10.7153/oam-05-22
- Allen L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974, pp. 49–128. MR 0361899
- P. J. Stacey, Inductive limit decompositions of real structures in irrational rotation algebras, Indiana Univ. Math. J. 51 (2002), no. 6, 1511–1540. MR 1948458, DOI 10.1512/iumj.2002.51.2042
- P. J. Stacey, Real structure in purely infinite $C^*$-algebras, J. Operator Theory 49 (2003), no. 1, 77–84. MR 1978322
- P. J. Stacey, Real structure in unital separable simple $C^*$-algebras with tracial rank zero and with a unique tracial state, New York J. Math. 12 (2006), 269–273. MR 2259241
- P. J. Stacey, Antisymmetries of the CAR algebra, Trans. Amer. Math. Soc. 363 (2011), no. 12, 6439–6452. With an appendix by Jeffrey L. Boersema and N. Christopher Phillips. MR 2833562, DOI 10.1090/S0002-9947-2011-05263-3
- Erling Størmer, On anti-automorphisms of von Neumann algebras, Pacific J. Math. 21 (1967), 349–370. MR 212584, DOI 10.2140/pjm.1967.21.349
- Xiaohuan Wang and Zongsheng Gao, A note on Aluthge transforms of complex symmetric operators and applications, Integral Equations Operator Theory 65 (2009), no. 4, 573–580. MR 2576310, DOI 10.1007/s00020-009-1719-5
- Sergey M. Zagorodnyuk, On a $J$-polar decomposition of a bounded operator and matrices of $J$-symmetric and $J$-skew-symmetric operators, Banach J. Math. Anal. 4 (2010), no. 2, 11–36. MR 2606479, DOI 10.15352/bjma/1297117238
- Sen Zhu and Chun Guang Li, Complex symmetry of a dense class of operators, Integral Equations Operator Theory 73 (2012), no. 2, 255–272. MR 2921067, DOI 10.1007/s00020-012-1957-9
- Sen Zhu and Chun Guang Li, Complex symmetric weighted shifts, Trans. Amer. Math. Soc. 365 (2013), no. 1, 511–530. MR 2984066, DOI 10.1090/S0002-9947-2012-05642-X
- Sen Zhu, Chun Guang Li, and You Qing Ji, The class of complex symmetric operators is not norm closed, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1705–1708. MR 2869154, DOI 10.1090/S0002-9939-2011-11345-5
Additional Information
- Kunyu Guo
- Affiliation: School of Mathematical Sciences, Fudan University, Shanghai 200433, People’s Republic of China
- Email: kyguo@fudan.edu.cn
- Youqing Ji
- Affiliation: Department of Mathematics, Jilin University, Changchun 130012, People’s Republic of China
- Email: jiyq@jlu.edu.cn
- Sen Zhu
- Affiliation: Department of Mathematics, Jilin University, Changchun 130012, People’s Republic of China
- Email: senzhu@163.com
- Received by editor(s): April 14, 2013
- Received by editor(s) in revised form: June 7, 2013
- Published electronically: February 26, 2015
- © Copyright 2015
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 367 (2015), 6903-6942
- MSC (2010): Primary 47C10, 47A58; Secondary 47B37, 47A45
- DOI: https://doi.org/10.1090/S0002-9947-2015-06215-1
- MathSciNet review: 3378818