Orthogonal symmetric affine Kac-Moody algebras
HTML articles powered by AMS MathViewer
- by Walter Freyn PDF
- Trans. Amer. Math. Soc. 367 (2015), 7133-7159 Request permission
Abstract:
Riemannian symmetric spaces are fundamental objects in finite dimensional differential geometry. An important problem is the construction of symmetric spaces for generalizations of simple Lie groups, especially their closest infinite dimensional analogues, known as affine Kac-Moody groups. We solve this problem and construct affine Kac-Moody symmetric spaces in a series of several papers. This paper focuses on the algebraic side; more precisely, we introduce OSAKAs, the algebraic structures used to describe the connection between affine Kac-Moody symmetric spaces and affine Kac-Moody algebras and describe their classification.References
- Carlos A. Berenstein and Roger Gay, Complex variables, Graduate Texts in Mathematics, vol. 125, Springer-Verlag, New York, 1991. An introduction. MR 1107514, DOI 10.1007/978-1-4612-3024-3
- Hechmi Ben Messaoud and Guy Rousseau, Classification des formes réelles presque compactes des algèbres de Kac-Moody affines, J. Algebra 267 (2003), no. 2, 443–513 (French, with French summary). MR 2003338, DOI 10.1016/S0021-8693(03)00345-4
- Valérie Back-Valente, Nicole Bardy-Panse, Hechmi Ben Messaoud, and Guy Rousseau, Formes presque-déployées des algèbres de Kac-Moody: classification et racines relatives, J. Algebra 171 (1995), no. 1, 43–96 (French). MR 1314093, DOI 10.1006/jabr.1995.1004
- R. W. Carter, Lie algebras of finite and affine type, Cambridge Studies in Advanced Mathematics, vol. 96, Cambridge University Press, Cambridge, 2005. MR 2188930, DOI 10.1017/CBO9780511614910
- Walter Freyn, A general theory of affine Kac-Moody symmetric spaces, Kongressberichte der Süddeutschen Geometrietagung, 32:4–18, 2007.
- Walter Freyn, Kac-Moody geometry. In Global Differential Geometry, Springer, Heidelberg, 2012, pp. 55–92.
- Walter Freyn, Kac-Moody symmetric spaces of Euclidean type. Submitted, 2013.
- Walter Freyn, Tame Fréchet structures for affine Kac-Moody groups, Asian J. Math. 18 (2014), no. 5, 885–928. MR 3287007, DOI 10.4310/AJM.2014.v18.n5.a6
- Walter Freyn, Tame Fréchet submanifolds of co-Banach type. To appear in Forum Math.
- Walter Freyn, Geometry of Kac-Moody symmetric spaces. Submitted, 2015.
- Ernst Heintze, Real forms and finite order automorphisms of affine Kac-Moody algebras - an outline of a new approach. Opus Bayern, http://www.opus-bayern.de/uni-augsburg/volltexte/2008/763:15, 2008.
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original. MR 1834454, DOI 10.1090/gsm/034
- Ernst Heintze and Christian Groß, Finite order automorphisms and real forms of affine Kac-Moody algebras in the smooth and algebraic category, Mem. Amer. Math. Soc. 219 (2012), no. 1030, viii+66. MR 2985521, DOI 10.1090/S0065-9266-2012-00650-2
- Ernst Heintze, Richard S. Palais, Chuu-Lian Terng, and Gudlaugur Thorbergsson, Hyperpolar actions on symmetric spaces, Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, pp. 214–245. MR 1358619
- V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1323–1367 (Russian). MR 0259961
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- I. L. Kantor, Graded Lie algebras, Trudy Sem. Vektor. Tenzor. Anal. 15 (1970), 227–266 (Russian). MR 0297827
- Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1923198, DOI 10.1007/978-1-4612-0105-2
- Fernando Levstein, A classification of involutive automorphisms of an affine Kac-Moody Lie algebra, J. Algebra 114 (1988), no. 2, 489–518. MR 936987, DOI 10.1016/0021-8693(88)90308-0
- Robert V. Moody, Euclidean Lie algebras, Canadian J. Math. 21 (1969), 1432–1454. MR 255627, DOI 10.4153/CJM-1969-158-2
- Robert V. Moody and Arturo Pianzola, Lie algebras with triangular decompositions, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1995. A Wiley-Interscience Publication. MR 1323858
- Dale H. Peterson and Victor G. Kac, Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 6, i, 1778–1782. MR 699439, DOI 10.1073/pnas.80.6.1778
- Andrew Pressley and Graeme Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. MR 900587
- Chuu-Lian Terng, Proper Fredholm submanifolds of Hilbert space, J. Differential Geom. 29 (1989), no. 1, 9–47. MR 978074
- Chuu-Lian Terng, Polar actions on Hilbert space, J. Geom. Anal. 5 (1995), no. 1, 129–150. MR 1315660, DOI 10.1007/BF02926445
Additional Information
- Walter Freyn
- Affiliation: Fachbereich Mathematik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Email: freyn@mathematik.tu-darmstadt.de
- Received by editor(s): September 6, 2012
- Received by editor(s) in revised form: May 6, 2013, July 21, 2013, and August 1, 2013
- Published electronically: April 20, 2015
- © Copyright 2015
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 367 (2015), 7133-7159
- MSC (2010): Primary 17B67, 20G44; Secondary 22E67, 53C35, 17B65
- DOI: https://doi.org/10.1090/tran/6257
- MathSciNet review: 3378826