Schur and Fourier multipliers of an amenable group acting on non-commutative $L^p$-spaces
HTML articles powered by AMS MathViewer
- by Martijn Caspers and Mikael de la Salle PDF
- Trans. Amer. Math. Soc. 367 (2015), 6997-7013 Request permission
Abstract:
Consider a completely bounded Fourier multiplier $\phi$ of a locally compact group $G$, and take $1 \leq p \leq \infty$. One can associate to $\phi$ a Schur multiplier on the Schatten classes $\mathcal {S}_p(L^2 G)$, as well as a Fourier multiplier on $L^p(\mathcal {L} G)$, the non-commutative $L^p$-space of the group von Neumann algebra of $G$. We prove that the completely bounded norm of the Schur multiplier is not greater than the completely bounded norm of the $L^p$-Fourier multiplier. When $G$ is amenable we show that equality holds, extending a result by Neuwirth and Ricard to non-discrete groups.
For a discrete group $G$ and in the special case when $p\neq 2$ is an even integer, we show the following. If there exists a map between $L^p(\mathcal {L} G)$ and an ultraproduct of $L^p(\mathcal {M}) \otimes \mathcal {S}_p(L^2G)$ that intertwines the Fourier multiplier with the Schur multiplier, then $G$ must be amenable. This is an obstruction to extend the Neuwirth-Ricard result to non-amenable groups.
References
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275, DOI 10.1007/978-3-642-66451-9
- Marek Bożejko and Gero Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. A (6) 3 (1984), no. 2, 297–302 (English, with Italian summary). MR 753889
- Jean De Cannière and Uffe Haagerup, Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, Amer. J. Math. 107 (1985), no. 2, 455–500. MR 784292, DOI 10.2307/2374423
- Zeqian Chen, Quanhua Xu, and Zhi Yin, Harmonic analysis on quantum tori, Comm. Math. Phys. 322 (2013), no. 3, 755–805. MR 3079331, DOI 10.1007/s00220-013-1745-7
- A. Connes, On the spatial theory of von Neumann algebras, J. Functional Analysis 35 (1980), no. 2, 153–164. MR 561983, DOI 10.1016/0022-1236(80)90002-6
- Michel Hilsum, Les espaces $L^{p}$ d’une algèbre de von Neumann définies par la derivée spatiale, J. Functional Analysis 40 (1981), no. 2, 151–169 (French, with English summary). MR 609439, DOI 10.1016/0022-1236(81)90065-3
- Hideaki Izumi, Constructions of non-commutative $L^p$-spaces with a complex parameter arising from modular actions, Internat. J. Math. 8 (1997), no. 8, 1029–1066. MR 1484866, DOI 10.1142/S0129167X97000494
- Hideki Kosaki, Applications of the complex interpolation method to a von Neumann algebra: noncommutative $L^{p}$-spaces, J. Funct. Anal. 56 (1984), no. 1, 29–78. MR 735704, DOI 10.1016/0022-1236(84)90025-9
- Tim de Laat, Approximation properties for noncommutative $L^p$-spaces associated with lattices in Lie groups, J. Funct. Anal. 264 (2013), no. 10, 2300–2322. MR 3035056, DOI 10.1016/j.jfa.2013.02.014
- Vincent Lafforgue and Mikael De la Salle, Noncommutative $L^p$-spaces without the completely bounded approximation property, Duke Math. J. 160 (2011), no. 1, 71–116. MR 2838352, DOI 10.1215/00127094-1443478
- Stefan Neuwirth and Éric Ricard, Transfer of Fourier multipliers into Schur multipliers and sumsets in a discrete group, Canad. J. Math. 63 (2011), no. 5, 1161–1187. MR 2866074, DOI 10.4153/CJM-2011-053-9
- Gilles Pisier, Non-commutative vector valued $L_p$-spaces and completely $p$-summing maps, Astérisque 247 (1998), vi+131 (English, with English and French summaries). MR 1648908
- Gilles Pisier and Quanhua Xu, Non-commutative $L^p$-spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1459–1517. MR 1999201, DOI 10.1016/S1874-5849(03)80041-4
- Yves Raynaud, On ultrapowers of non commutative $L_p$ spaces, J. Operator Theory 48 (2002), no. 1, 41–68. MR 1926043
- M. Takesaki, Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, vol. 125, Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative Geometry, 6. MR 1943006, DOI 10.1007/978-3-662-10451-4
- M. Terp, $L^p$ spaces associated with von Neumann algebras. Notes, Report No. 3a + 3b, Københavns Universitets Matematiske Institut, Juni 1981.
- Marianne Terp, Interpolation spaces between a von Neumann algebra and its predual, J. Operator Theory 8 (1982), no. 2, 327–360. MR 677418
Additional Information
- Martijn Caspers
- Affiliation: Laboratoire de Mathématiques, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
- Address at time of publication: Einsteinstrasse 62, D-48149 Münster, Germany
- Email: martijn.caspers@univ-fcomte.fr, martijn.caspers@uni-muenster.de
- Mikael de la Salle
- Affiliation: CNRS, Laboratoire de Mathématiques, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
- Address at time of publication: ENS de Lyon, (site Sciences), 46, allée d’Italie, 69364 Lyon Cedex 07, France
- Email: mikael.de_la_salle@univ-fcomte.fr, mikael.de.la.salle@ens-lyon.fr
- Received by editor(s): March 5, 2013
- Received by editor(s) in revised form: June 18, 2013
- Published electronically: March 4, 2015
- Additional Notes: The first author was supported by the ANR project ANR-2011-BS01-008-01
The second author was partially supported by the ANR projects NEUMANN and OSQPI - © Copyright 2015
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 367 (2015), 6997-7013
- MSC (2010): Primary 43A15, 46B08, 46B28, 46B70
- DOI: https://doi.org/10.1090/S0002-9947-2015-06281-3
- MathSciNet review: 3378821