Explicit examples of equivalence relations and II$_1$ factors with prescribed fundamental group and outer automorphism group
HTML articles powered by AMS MathViewer
- by Steven Deprez PDF
- Trans. Amer. Math. Soc. 367 (2015), 6837-6876 Request permission
Abstract:
In this paper we give a number of explicit constructions for II$_1$ factors and II$_1$ equivalence relations that have prescribed fundamental group and outer automorphism group. We construct factors and relations that have uncountable fundamental group different from $\mathbb {R}_{+}^{\ast }$. In fact, given any II$_1$ equivalence relation, we construct a II$_1$ factor with the same fundamental group. Given any locally compact unimodular second countable group $G$, our construction gives a II$_1$ equivalence relation $\mathcal {R}$ whose outer automorphism group is $G$. The same construction does not give a II$_1$ factor with $G$ as outer automorphism group, but when $G$ is a compact group or if $G=\mathrm {SL}^{\pm }_n\mathbb {R}=\{g\in \mathrm {GL}_n\mathbb {R}\mid \det (g)=\pm 1\}$, then we still find a type II$_1$ factor whose outer automorphism group is $G$.References
- Jon Aaronson, The intrinsic normalising constants of transformations preserving infinite measures, J. Analyse Math. 49 (1987), 239–270. MR 928513, DOI 10.1007/BF02792898
- Jon Aaronson and Mahendra Nadkarni, $L_\infty$ eigenvalues and $L_2$ spectra of nonsingular transformations, Proc. London Math. Soc. (3) 55 (1987), no. 3, 538–570. MR 907232, DOI 10.1112/plms/s3-55.3.538
- Bachir Bekka, Pierre de la Harpe, and Alain Valette, Kazhdan’s property (T), New Mathematical Monographs, vol. 11, Cambridge University Press, Cambridge, 2008. MR 2415834, DOI 10.1017/CBO9780511542749
- Robert J. Blattner, Automorphic group representations, Pacific J. Math. 8 (1958), 665–677. MR 103421, DOI 10.2140/pjm.1958.8.665
- Ionut Chifan and Cyril Houdayer, Bass-Serre rigidity results in von Neumann algebras, Duke Math. J. 153 (2010), no. 1, 23–54. MR 2641939, DOI 10.1215/00127094-2010-020
- A. Connes, Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, DOI 10.2307/1971057
- A. Connes, A factor of type $\textrm {II}_{1}$ with countable fundamental group, J. Operator Theory 4 (1980), no. 1, 151–153. MR 587372
- A. Connes and V. Jones, A $\textrm {II}_{1}$ factor with two nonconjugate Cartan subalgebras, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 2, 211–212. MR 640947, DOI 10.1090/S0273-0979-1982-14981-3
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219 [Deprez:PhDthesis] S. Deprez, Some computations of invariants of type II$_1$ factors, PhD thesis, K.U.Leuven, 2011. math.ku.dk/~sdeprez/publications-en.html
- Steven Deprez and Stefaan Vaes, A classification of all finite index subfactors for a class of group-measure space $\textrm {II}_1$ factors, J. Noncommut. Geom. 5 (2011), no. 4, 523–545. MR 2838524, DOI 10.4171/JNCG/85
- Sébastien Falguières and Stefaan Vaes, Every compact group arises as the outer automorphism group of a $\textrm {II}_1$ factor, J. Funct. Anal. 254 (2008), no. 9, 2317–2328. MR 2409162, DOI 10.1016/j.jfa.2008.02.002
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI 10.1090/S0002-9947-1977-0578656-4
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Cyril Houdayer, Construction of type $\rm II_1$ factors with prescribed countable fundamental group, J. Reine Angew. Math. 634 (2009), 169–207. MR 2560409, DOI 10.1515/CRELLE.2009.072
- Cyril Houdayer, Sorin Popa, and Stefaan Vaes, A class of groups for which every action is $\mathrm {W}^*$-superrigid, Groups Geom. Dyn. 7 (2013), no. 3, 577–590. MR 3095710, DOI 10.4171/GGD/198
- Cyril Houdayer and Éric Ricard, Approximation properties and absence of Cartan subalgebra for free Araki-Woods factors, Adv. Math. 228 (2011), no. 2, 764–802. MR 2822210, DOI 10.1016/j.aim.2011.06.010
- Adrian Ioana, Jesse Peterson, and Sorin Popa, Amalgamated free products of weakly rigid factors and calculation of their symmetry groups, Acta Math. 200 (2008), no. 1, 85–153. MR 2386109, DOI 10.1007/s11511-008-0024-5
- F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716–808. MR 9096, DOI 10.2307/1969107
- A. Yu. Ol′shanskiĭ, On residualing homomorphisms and $G$-subgroups of hyperbolic groups, Internat. J. Algebra Comput. 3 (1993), no. 4, 365–409. MR 1250244, DOI 10.1142/S0218196793000251
- Narutaka Ozawa, There is no separable universal $\rm II_1$-factor, Proc. Amer. Math. Soc. 132 (2004), no. 2, 487–490. MR 2022373, DOI 10.1090/S0002-9939-03-07127-2
- Sorin Popa, On a class of type $\textrm {II}_1$ factors with Betti numbers invariants, Ann. of Math. (2) 163 (2006), no. 3, 809–899. MR 2215135, DOI 10.4007/annals.2006.163.809
- Sorin Popa, Strong rigidity of $\rm II_1$ factors arising from malleable actions of $w$-rigid groups. I, Invent. Math. 165 (2006), no. 2, 369–408. MR 2231961, DOI 10.1007/s00222-006-0501-4
- Sorin Popa, Strong rigidity of $\rm II_1$ factors arising from malleable actions of $w$-rigid groups. II, Invent. Math. 165 (2006), no. 2, 409–451. MR 2231962, DOI 10.1007/s00222-006-0502-3
- Sorin Popa, Cocycle and orbit equivalence superrigidity for malleable actions of $w$-rigid groups, Invent. Math. 170 (2007), no. 2, 243–295. MR 2342637, DOI 10.1007/s00222-007-0063-0
- Sorin Popa, On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc. 21 (2008), no. 4, 981–1000. MR 2425177, DOI 10.1090/S0894-0347-07-00578-4
- Sorin Popa and Stefaan Vaes, Strong rigidity of generalized Bernoulli actions and computations of their symmetry groups, Adv. Math. 217 (2008), no. 2, 833–872. MR 2370283, DOI 10.1016/j.aim.2007.09.006
- Sorin Popa and Stefaan Vaes, Actions of $\Bbb F_\infty$ whose $\textrm {II}_1$ factors and orbit equivalence relations have prescribed fundamental group, J. Amer. Math. Soc. 23 (2010), no. 2, 383–403. MR 2601038, DOI 10.1090/S0894-0347-09-00644-4
- Sorin Popa and Stefaan Vaes, Group measure space decomposition of $\textrm {II}_1$ factors and $W^\ast$-superrigidity, Invent. Math. 182 (2010), no. 2, 371–417. MR 2729271, DOI 10.1007/s00222-010-0268-5
- Sorin Popa and Stefaan Vaes, Cocycle and orbit superrigidity for lattices in $\textrm {SL}(n,\Bbb R)$ acting on homogeneous spaces, Geometry, rigidity, and group actions, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 2011, pp. 419–451. MR 2807839
- Sorin Popa and Stefaan Vaes, On the fundamental group of $\textrm {II}_1$ factors and equivalence relations arising from group actions, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 519–541. MR 2732063, DOI 10.1007/s00222-010-0268-5
- I. M. Singer, Automorphisms of finite factors, Amer. J. Math. 77 (1955), 117–133. MR 66567, DOI 10.2307/2372424
- Stefaan Vaes, Rigidity results for Bernoulli actions and their von Neumann algebras (after Sorin Popa), Astérisque 311 (2007), Exp. No. 961, viii, 237–294. Séminaire Bourbaki. Vol. 2005/2006. MR 2359046
- Stefaan Vaes, Explicit computations of all finite index bimodules for a family of $\textrm {II}_1$ factors, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 5, 743–788 (English, with English and French summaries). MR 2504433, DOI 10.24033/asens.2081
Additional Information
- Steven Deprez
- Affiliation: Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium
- Email: steven.f.l.deprez@gmail.com
- Received by editor(s): October 5, 2012
- Received by editor(s) in revised form: April 9, 2013
- Published electronically: June 18, 2015
- Additional Notes: The author was a research assistant of the Research Foundation – Flanders (FWO) (until August 2011) and a postdoc at the University of Copenhagen (from September 2011). The author was partially supported by ERC Grant VNALG-200749 and ERC Advanced Grant no. OAFPG 247321, and was supported by the Danish National Research Foundation (DNRF) through the Centre for Symmetry and Deformation
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 367 (2015), 6837-6876
- MSC (2010): Primary 46L36; Secondary 28D15, 46L40, 37A20
- DOI: https://doi.org/10.1090/tran/6298
- MathSciNet review: 3378816