A controlling norm for energy-critical Schrödinger maps
HTML articles powered by AMS MathViewer
- by Benjamin Dodson and Paul Smith PDF
- Trans. Amer. Math. Soc. 367 (2015), 7193-7220 Request permission
Abstract:
We consider energy-critical Schrödinger maps with target either the sphere $\mathbb {S}^2$ or hyperbolic plane $\mathbb {H}^2$ and establish that a unique solution may be continued so long as a certain space-time $L^4$ norm remains bounded. This reduces the large data global wellposedness problem to that of controlling this norm.References
- I. Bejenaru, A. Ionescu, C. Kenig, and D. Tataru, Equivariant Schrödinger maps in two spatial dimensions, Duke Math. J. 162 (2013), no. 11, 1967–2025. MR 3090782, DOI 10.1215/00127094-2293611
- I. Bejenaru, A. Ionescu, C. E. Kenig, and D. Tataru, Equivariant Schrödinger Maps in two spatial dimensions: the $\mathbb {H}^2$ target, ArXiv e-prints: 1212.2566 (2012).
- I. Bejenaru, A. D. Ionescu, and C. E. Kenig, Global existence and uniqueness of Schrödinger maps in dimensions $d\geq 4$, Adv. Math. 215 (2007), no. 1, 263–291. MR 2354991, DOI 10.1016/j.aim.2007.04.009
- I. Bejenaru, A. D. Ionescu, C. E. Kenig, and D. Tataru, Global Schrödinger maps in dimensions $d\geq 2$: small data in the critical Sobolev spaces, Ann. of Math. (2) 173 (2011), no. 3, 1443–1506. MR 2800718, DOI 10.4007/annals.2011.173.3.5
- Ioan Bejenaru, Global results for Schrödinger maps in dimensions $n\geq 3$, Comm. Partial Differential Equations 33 (2008), no. 1-3, 451–477. MR 2398238, DOI 10.1080/03605300801895225
- Ioan Bejenaru, On Schrödinger maps, Amer. J. Math. 130 (2008), no. 4, 1033–1065. MR 2427007, DOI 10.1353/ajm.0.0014
- Nai-Heng Chang, Jalal Shatah, and Karen Uhlenbeck, Schrödinger maps, Comm. Pure Appl. Math. 53 (2000), no. 5, 590–602. MR 1737504, DOI 10.1002/(SICI)1097-0312(200005)53:5<590::AID-CPA2>3.3.CO;2-I
- B. Dodson, Bilinear Strichartz estimates for the Schrödinger map problem, ArXiv e-prints: 1210:5255 (2012).
- S. Gustafson and E. Koo, Global well-posedness for 2D radial Schrödinger maps into the sphere, ArXiv e-prints: 1105.5659 (2011).
- Alexandru D. Ionescu and Carlos E. Kenig, Low-regularity Schrödinger maps, Differential Integral Equations 19 (2006), no. 11, 1271–1300. MR 2278007
- Alexandru D. Ionescu and Carlos E. Kenig, Low-regularity Schrödinger maps. II. Global well-posedness in dimensions $d\geq 3$, Comm. Math. Phys. 271 (2007), no. 2, 523–559. MR 2287916, DOI 10.1007/s00220-006-0180-4
- L. D. Landau, Collected papers of L. D. Landau, Gordon and Breach Science Publishers, New York-London-Paris, 1967. Edited and with an introduction by D. ter Haar; Second printing. MR 0237287
- L. Martina, O. K. Pashaev, and G. Soliani, Quantization of planar ferromagnets in the Chern-Simons representation, Teoret. Mat. Fiz. 99 (1994), no. 3, 450–461 (English, with English and Russian summaries); English transl., Theoret. and Math. Phys. 99 (1994), no. 3, 718–725. MR 1308811, DOI 10.1007/BF01017058
- Helena McGahagan, An approximation scheme for Schrödinger maps, Comm. Partial Differential Equations 32 (2007), no. 1-3, 375–400. MR 2304153, DOI 10.1080/03605300600856758
- Andrea Nahmod, Atanas Stefanov, and Karen Uhlenbeck, On the well-posedness of the wave map problem in high dimensions, Comm. Anal. Geom. 11 (2003), no. 1, 49–83. MR 2016196, DOI 10.4310/CAG.2003.v11.n1.a4
- N. Papanicolaou and T. N. Tomaras, Dynamics of magnetic vortices, Nuclear Phys. B 360 (1991), no. 2-3, 425–462. MR 1118793, DOI 10.1016/0550-3213(91)90410-Y
- Fabrice Planchon and Luis Vega, Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 2, 261–290 (English, with English and French summaries). MR 2518079, DOI 10.24033/asens.2096
- Paul Smith, Global regularity of critical Schrödinger maps: subthreshold dispersed energy, ArXiv e-prints: 1112.0251 (2011).
- Paul Smith, Geometric renormalization below the ground state, Int. Math. Res. Not. IMRN 16 (2012), 3800–3844. MR 2959028, DOI 10.1093/imrn/rnr169
- Paul Smith, Conditional global regularity of Schrödinger maps: subthreshold dispersed energy, Anal. PDE 6 (2013), no. 3, 601–686. MR 3080191, DOI 10.2140/apde.2013.6.601
- Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705–714. MR 512086
- P.-L. Sulem, C. Sulem, and C. Bardos, On the continuous limit for a system of classical spins, Comm. Math. Phys. 107 (1986), no. 3, 431–454. MR 866199, DOI 10.1007/BF01220998
- Terence Tao, Geometric renormalization of large energy wave maps, Journées “Équations aux Dérivées Partielles”, École Polytech., Palaiseau, 2004, pp. Exp. No. XI, 32. MR 2135366
- Terence Tao, Global regularity of wave maps IV. Absence of stationary or self-similar solutions in the energy class, ArXiv e-prints: 0806.3592 (2008).
Additional Information
- Benjamin Dodson
- Affiliation: Department of Mathematics, 970 Evans Hall, University of California, Berkeley, California 94720-3840
- Address at time of publication: Department of Mathematics, Johns Hopkins University, 404 Krieger Hall, 3400 N. Charles Street, Baltimore, Maryland 21218
- MR Author ID: 891326
- Email: benjadod@math.berkeley.edu, dodson@math.jhu.edu
- Paul Smith
- Affiliation: Department of Mathematics, 970 Evans Hall, University of California, Berkeley, California 94720-3840
- Address at time of publication: Google, 1600 Amphitheatre Parkway, Mountain View, California 94043
- Email: smith@math.berkeley.edu
- Received by editor(s): February 18, 2013
- Received by editor(s) in revised form: August 15, 2013
- Published electronically: April 2, 2015
- Additional Notes: The first author was supported by NSF grant DMS-1103914 and the second by NSF grant DMS-1103877.
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 367 (2015), 7193-7220
- MSC (2010): Primary 35Q55; Secondary 35B33
- DOI: https://doi.org/10.1090/S0002-9947-2015-06417-4
- MathSciNet review: 3378828