Some dynamical properties of pseudo-automorphisms in dimension $3$
HTML articles powered by AMS MathViewer
- by Tuyen Trung Truong PDF
- Trans. Amer. Math. Soc. 368 (2016), 727-753
Abstract:
Let $X$ be a compact Kähler manifold of dimension $3$ and let $f:X\rightarrow X$ be a pseudo-automorphism. Under the mild condition that $\lambda _1(f)^2>\lambda _2(f)$, we prove the existence of invariant positive closed $(1,1)$ and $(2,2)$ currents, and we also discuss the (still open) problem of intersection of such currents. We prove a weak equi-distribution result for Green $(1,1)$ currents of meromorphic selfmaps, not necessarily algebraic $1$-stable, of a compact Kähler manifold of arbitrary dimension and discuss how a stronger equidistribution result may be proved for pseudo-automorphisms in dimension $3$. As a byproduct, we show that the intersection of some dynamically related currents is well-defined with respect to our definition here, even though not obviously to be seen so using the usual criteria.References
- Lucia Alessandrini and Giovanni Bassanelli, Transforms of currents by modifications and 1-convex manifolds, Osaka J. Math. 40 (2003), no. 3, 717–740. MR 2003745
- Giovanni Bassanelli, A cut-off theorem for plurisubharmonic currents, Forum Math. 6 (1994), no. 5, 567–595. MR 1295153, DOI 10.1515/form.1994.6.567
- Turgay Bayraktar, Green currents for meromorphic maps of compact Kähler manifolds, J. Geom. Anal. 23 (2013), no. 2, 970–998. MR 3023864, DOI 10.1007/s12220-012-9315-3
- Jérémy Blanc, Dynamical degrees of (pseudo)-automorphisms fixing cubic hypersurfaces, Indiana Univ. Math. J. 62 (2013), no. 4, 1143–1164. MR 3179687, DOI 10.1512/iumj.2013.62.5040
- J.-B. Bost, H. Gillet, and C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 (1994), no. 4, 903–1027. MR 1260106, DOI 10.1090/S0894-0347-1994-1260106-X
- Eric Bedford, S. Cantat, and K.-H. Kim, work in progress, March 2013.
- Eric Bedford, J. Diller, and K.-H. Kim, work in progress.
- Eric Bedford and K.-H. Kim, Pseudo-automorphisms without dimension-reducing factors, Manuscript.
- Eric Bedford and K.-H. Kim, Pseudo-automorphisms of $3$-space: periodicities and positive entropy in linear fractional recurrences, arXiv: 1101.1614.
- Eric Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), no. 1-2, 1–40. MR 674165, DOI 10.1007/BF02392348
- Serge Cantat, Dynamique des automorphismes des surfaces $K3$, Acta Math. 187 (2001), no. 1, 1–57 (French). MR 1864630, DOI 10.1007/BF02392831
- Serge Cantat and Igor Dolgachev, Rational surfaces with a large group of automorphisms, J. Amer. Math. Soc. 25 (2012), no. 3, 863–905. MR 2904576, DOI 10.1090/S0894-0347-2012-00732-2
- Jean-Pierre Demailly, Complex analytic and differential geometry, online book, version of Thursday, 10 September 2009.
- Jean-Pierre Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry, Univ. Ser. Math., Plenum, New York, 1993, pp. 115–193. MR 1211880
- Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider, Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math. 12 (2001), no. 6, 689–741. MR 1875649, DOI 10.1142/S0129167X01000861
- Henry De Thélin and Gabriel Vigny, Entropy of meromorphic maps and dynamics of birational maps, Mém. Soc. Math. Fr. (N.S.) 122 (2010), vi+98 (English, with English and French summaries). MR 2752759, DOI 10.24033/msmf.434
- J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123 (2001), no. 6, 1135–1169. MR 1867314, DOI 10.1353/ajm.2001.0038
- Jeffrey Diller, Birational maps, positive currents, and dynamics, Michigan Math. J. 46 (1999), no. 2, 361–375. MR 1704197, DOI 10.1307/mmj/1030132416
- Jeffrey Diller, Romain Dujardin, and Vincent Guedj, Dynamics of meromorphic maps with small topological degree I: from cohomology to currents, Indiana Univ. Math. J. 59 (2010), no. 2, 521–561. MR 2648077, DOI 10.1512/iumj.2010.59.4023
- Jeffrey Diller and Vincent Guedj, Regularity of dynamical Green’s functions, Trans. Amer. Math. Soc. 361 (2009), no. 9, 4783–4805. MR 2506427, DOI 10.1090/S0002-9947-09-04740-0
- Tien-Cuong Dinh and Nessim Sibony, Une borne supérieure pour l’entropie topologique d’une application rationnelle, Ann. of Math. (2) 161 (2005), no. 3, 1637–1644 (French, with English summary). MR 2180409, DOI 10.4007/annals.2005.161.1637
- Tien-Cuong Dinh and Nessim Sibony, Regularization of currents and entropy, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 6, 959–971 (English, with English and French summaries). MR 2119243, DOI 10.1016/j.ansens.2004.09.002
- Tien-Cuong Dinh and Nessim Sibony, Pull-back of currents by holomorphic maps, Manuscripta Math. 123 (2007), no. 3, 357–371. MR 2314090, DOI 10.1007/s00229-007-0103-5
- Tien-Cuong Dinh and Nessim Sibony, Green currents for holomorphic automorphisms of compact Kähler manifolds, J. Amer. Math. Soc. 18 (2005), no. 2, 291–312. MR 2137979, DOI 10.1090/S0894-0347-04-00474-6
- Tien-Cuong Dinh and Nessim Sibony, Super-potentials of positive closed currents, intersection theory and dynamics, Acta Math. 203 (2009), no. 1, 1–82. MR 2545825, DOI 10.1007/s11511-009-0038-7
- Tien-Cuong Dinh and Nessim Sibony, Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms, J. Algebraic Geom. 19 (2010), no. 3, 473–529. MR 2629598, DOI 10.1090/S1056-3911-10-00549-7
- Tien-Cuong Dinh and Nessim Sibony, Density of positive closed currents and dynamics of Hénon-type automorphisms of $\mathbb {C}^k$ (part I), arXiv:1203.5810.
- Igor Dolgachev and David Ortland, Point sets in projective spaces and theta functions, Astérisque 165 (1988), 210 pp. (1989) (English, with French summary). MR 1007155
- Charles Favre, Note on pull-back and Lelong number of currents, Bull. Soc. Math. France 127 (1999), no. 3, 445–458 (English, with English and French summaries). MR 1724404, DOI 10.24033/bsmf.2356
- John Erik Fornæss and Nessim Sibony, Oka’s inequality for currents and applications, Math. Ann. 301 (1995), no. 3, 399–419. MR 1324517, DOI 10.1007/BF01446636
- John Erik Fornæss and Nessim Sibony, Complex dynamics in higher dimensions, Complex potential theory (Montreal, PQ, 1993) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 439, Kluwer Acad. Publ., Dordrecht, 1994, pp. 131–186. Notes partially written by Estela A. Gavosto. MR 1332961
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Mikhaïl Gromov, On the entropy of holomorphic maps, Enseign. Math. (2) 49 (2003), no. 3-4, 217–235. MR 2026895
- Vincent Guedj, Decay of volumes under iteration of meromorphic mappings, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 7, 2369–2386 (2005) (English, with English and French summaries). MR 2139697, DOI 10.5802/aif.2083
- Vincent Guedj, Propriétés ergodiques des applications rationnelles, Quelques aspects des systèmes dynamiques polynomiaux, Panor. Synthèses, vol. 30, Soc. Math. France, Paris, 2010, pp. 97–202 (French, with English and French summaries). MR 2932434
- P. Lelong, Fonctions plurisousharmoniques et formes différentielles positives, Gordon & Breach, Paris-London-New York; distributed by Dunod Éditeur, Paris, 1968 (French). MR 0243112
- Michel Meo, Image inverse d’un courant positif fermé par une application analytique surjective, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 12, 1141–1144 (French, with English and French summaries). MR 1396655
- Keiji Oguiso and Fabio Perroni, Automorphisms of rational manifolds of positive entropy with Siegel disks, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 22 (2011), no. 4, 487–504. MR 2904995, DOI 10.4171/rlm/610
- Keiji Oguiso, Bimeromorphic automorphism groups of non-projective hyperkähler manifolds—a note inspired by C. T. McMullen, J. Differential Geom. 78 (2008), no. 1, 163–191. MR 2406267
- Keiji Oguiso, Automorphism groups of Calabi-Yau manifolds of Picard number 2, J. Algebraic Geom. 23 (2014), no. 4, 775–795. MR 3263669, DOI 10.1090/S1056-3911-2014-00642-1
- Keiji Oguiso, A remark on dynamical degrees of automorphisms of hyperkähler manifolds, Manuscripta Math. 130 (2009), no. 1, 101–111. MR 2533769, DOI 10.1007/s00229-009-0271-6
- Fabio Perroni and De-Qi Zhang, Pseudo-automorphisms of positive entropy on the blowups of products of projective spaces, Math. Ann. 359 (2014), no. 1-2, 189–209. MR 3201898, DOI 10.1007/s00208-013-0992-4
- Alexander Russakovskii and Bernard Shiffman, Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J. 46 (1997), no. 3, 897–932. MR 1488341, DOI 10.1512/iumj.1997.46.1441
- Nessim Sibony, Dynamique des applications rationnelles de $\mathbf P^k$, Dynamique et géométrie complexes (Lyon, 1997) Panor. Synthèses, vol. 8, Soc. Math. France, Paris, 1999, pp. ix–x, xi–xii, 97–185 (French, with English and French summaries). MR 1760844
- Tuyen Trung Truong, The simplicity of the first spectral radius of a meromorphic map, Michigan Math. J. 63 (2014), no. 3, 623–633. MR 3255693, DOI 10.1307/mmj/1409932635
- Tuyen Trung Truong, Pullback of currents by meromorphic maps, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–Indiana University. MR 3054986
- Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), no. 3, 285–300. MR 889979, DOI 10.1007/BF02766215
Additional Information
- Tuyen Trung Truong
- Affiliation: Department of Mathematics, Syracuse University, Syracuse, New York 13244
- Address at time of publication: School of Mathematics, Korea Institute for Advanced Study, Seoul 130-722, Republic of Korea
- MR Author ID: 724811
- Email: tutruong@syr.edu, truong@kias.re.kr
- Received by editor(s): May 8, 2013
- Received by editor(s) in revised form: December 3, 2013
- Published electronically: December 16, 2014
- © Copyright 2014 by the author
- Journal: Trans. Amer. Math. Soc. 368 (2016), 727-753
- MSC (2010): Primary 37F99, 32H50
- DOI: https://doi.org/10.1090/S0002-9947-2014-06340-X
- MathSciNet review: 3413882