Some equations for the universal Kummer variety
HTML articles powered by AMS MathViewer
- by Bert van Geemen PDF
- Trans. Amer. Math. Soc. 368 (2016), 209-225 Request permission
Abstract:
We give a method to find quartic equations for Kummer varieties and we give some explicit examples. From these equations for $g$-dimensional Kummer varieties one obtains equations for the moduli space of $g+1$-dimensional Kummer varieties. These again define modular forms which vanish on the period matrices of Riemann surfaces. The modular forms that we find for $g=5$ appear to be new and of lower weight than known before.References
- C. Herbert Clemens, A scrapbook of complex curve theory, University Series in Mathematics, Plenum Press, New York-London, 1980. MR 614289
- G. Codogni, N.I. Shepherd-Barron, The absence of stable Schottky forms, arXiv:1112.6137.
- Francesco Dalla Piazza and Bert van Geemen, Siegel modular forms and finite symplectic groups, Adv. Theor. Math. Phys. 13 (2009), no. 6, 1771–1814. MR 2678996, DOI 10.4310/ATMP.2009.v13.n6.a4
- J. S. Frame, Some characters of orthogonal groups over the field of two elements, Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973) Lecture Notes in Math., Vol. 372, Springer, Berlin, 1974, pp. 298–314. MR 0364477
- Eberhard Freitag and Manabu Oura, A theta relation in genus 4, Nagoya Math. J. 161 (2001), 69–83. MR 1820213, DOI 10.1017/S0027763000022133
- Eberhard Freitag, Die Irreduzibilität der Schottkyrelation (Bemerkung zu einem Satz von J. Igusa), Arch. Math. (Basel) 40 (1983), no. 3, 255–259 (German). MR 701272, DOI 10.1007/BF01192778
- Bert van Geemen, Schottky-Jung relations and vectorbundles on hyperelliptic curves, Math. Ann. 281 (1988), no. 3, 431–449. MR 954151, DOI 10.1007/BF01457155
- Lucia Caporaso, James McKernan, Mircea Mustaţă, and Mihnea Popa (eds.), Current developments in algebraic geometry, Mathematical Sciences Research Institute Publications, vol. 59, Cambridge University Press, Cambridge, 2012. MR 2920149
- S. Grushevsky, R. Salvati Manni, On the Coble quartic, arXiv:1212.1895.
- Jun-ichi Igusa, Schottky’s invariant and quadratic forms, E. B. Christoffel (Aachen/Monschau, 1979) Birkhäuser, Basel-Boston, Mass., 1981, pp. 352–362. MR 661078
- Abdelhamid Khaled, Projective normality and equations of Kummer varieties, J. Reine Angew. Math. 465 (1995), 197–217. MR 1344137, DOI 10.1515/crll.1995.465.197
- Qingchun Ren, Steven V. Sam, Gus Schrader, and Bernd Sturmfels, The universal Kummer threefold, Exp. Math. 22 (2013), no. 3, 327–362. MR 3171096, DOI 10.1080/10586458.2013.816206
- Charles Siegel, The Schottky problem in genus five, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–University of Pennsylvania. MR 3034698
Additional Information
- Bert van Geemen
- Affiliation: Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133 Milano, Italia
- MR Author ID: 214021
- Received by editor(s): October 10, 2013
- Received by editor(s) in revised form: October 28, 2013
- Published electronically: April 3, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 209-225
- MSC (2010): Primary 14K25; Secondary 14K10
- DOI: https://doi.org/10.1090/tran/6309
- MathSciNet review: 3413861