## Some equations for the universal Kummer variety

HTML articles powered by AMS MathViewer

- by Bert van Geemen PDF
- Trans. Amer. Math. Soc.
**368**(2016), 209-225 Request permission

## Abstract:

We give a method to find quartic equations for Kummer varieties and we give some explicit examples. From these equations for $g$-dimensional Kummer varieties one obtains equations for the moduli space of $g+1$-dimensional Kummer varieties. These again define modular forms which vanish on the period matrices of Riemann surfaces. The modular forms that we find for $g=5$ appear to be new and of lower weight than known before.## References

- C. Herbert Clemens,
*A scrapbook of complex curve theory*, University Series in Mathematics, Plenum Press, New York-London, 1980. MR**614289** - G. Codogni, N.I. Shepherd-Barron,
*The absence of stable Schottky forms*, arXiv:1112.6137. - Francesco Dalla Piazza and Bert van Geemen,
*Siegel modular forms and finite symplectic groups*, Adv. Theor. Math. Phys.**13**(2009), no. 6, 1771–1814. MR**2678996**, DOI 10.4310/ATMP.2009.v13.n6.a4 - J. S. Frame,
*Some characters of orthogonal groups over the field of two elements*, Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973) Lecture Notes in Math., Vol. 372, Springer, Berlin, 1974, pp. 298–314. MR**0364477** - Eberhard Freitag and Manabu Oura,
*A theta relation in genus 4*, Nagoya Math. J.**161**(2001), 69–83. MR**1820213**, DOI 10.1017/S0027763000022133 - Eberhard Freitag,
*Die Irreduzibilität der Schottkyrelation (Bemerkung zu einem Satz von J. Igusa)*, Arch. Math. (Basel)**40**(1983), no. 3, 255–259 (German). MR**701272**, DOI 10.1007/BF01192778 - Bert van Geemen,
*Schottky-Jung relations and vectorbundles on hyperelliptic curves*, Math. Ann.**281**(1988), no. 3, 431–449. MR**954151**, DOI 10.1007/BF01457155 - Lucia Caporaso, James McKernan, Mircea Mustaţă, and Mihnea Popa (eds.),
*Current developments in algebraic geometry*, Mathematical Sciences Research Institute Publications, vol. 59, Cambridge University Press, Cambridge, 2012. MR**2920149** - S. Grushevsky, R. Salvati Manni,
*On the Coble quartic*, arXiv:1212.1895. - Jun-ichi Igusa,
*Schottky’s invariant and quadratic forms*, E. B. Christoffel (Aachen/Monschau, 1979) Birkhäuser, Basel-Boston, Mass., 1981, pp. 352–362. MR**661078** - Abdelhamid Khaled,
*Projective normality and equations of Kummer varieties*, J. Reine Angew. Math.**465**(1995), 197–217. MR**1344137**, DOI 10.1515/crll.1995.465.197 - Qingchun Ren, Steven V. Sam, Gus Schrader, and Bernd Sturmfels,
*The universal Kummer threefold*, Exp. Math.**22**(2013), no. 3, 327–362. MR**3171096**, DOI 10.1080/10586458.2013.816206 - Charles Siegel,
*The Schottky problem in genus five*, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–University of Pennsylvania. MR**3034698**

## Additional Information

**Bert van Geemen**- Affiliation: Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133 Milano, Italia
- MR Author ID: 214021
- Received by editor(s): October 10, 2013
- Received by editor(s) in revised form: October 28, 2013
- Published electronically: April 3, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**368**(2016), 209-225 - MSC (2010): Primary 14K25; Secondary 14K10
- DOI: https://doi.org/10.1090/tran/6309
- MathSciNet review: 3413861