Deuring’s mass formula of a Mumford family
HTML articles powered by AMS MathViewer
- by Mao Sheng and Kang Zuo PDF
- Trans. Amer. Math. Soc. 368 (2016), 169-207 Request permission
Abstract:
We study the Newton polygon jumping locus of a Mumford family in char $p$. Our main result says that, under a mild assumption on $p$, the jumping locus consists of only supersingular points and its cardinality is equal to $(p^r-1)(g-1)$, where $r$ is the degree of the defining field of the base curve of a Mumford family in char $p$ and $g$ is the genus of the curve. The underlying technique is the $p$-adic Hodge theory.References
- Laurent Berger, Représentations $p$-adiques et équations différentielles, Invent. Math. 148 (2002), no. 2, 219–284 (French, with English summary). MR 1906150, DOI 10.1007/s002220100202
- Don Blasius, A $p$-adic property of Hodge classes on abelian varieties, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 293–308. MR 1265557
- Christophe Breuil, Groupes $p$-divisibles, groupes finis et modules filtrés, Ann. of Math. (2) 152 (2000), no. 2, 489–549 (French, with French summary). MR 1804530, DOI 10.2307/2661391
- Christophe Breuil, Integral $p$-adic Hodge theory, Algebraic geometry 2000, Azumino (Hotaka), Adv. Stud. Pure Math., vol. 36, Math. Soc. Japan, Tokyo, 2002, pp. 51–80. MR 1971512, DOI 10.2969/aspm/03610051
- Henri Carayol, Sur la mauvaise réduction des courbes de Shimura, Compositio Math. 59 (1986), no. 2, 151–230 (French). MR 860139
- Pierre Deligne, Travaux de Shimura, Séminaire Bourbaki, 23ème année (1970/71), Exp. No. 389, Lecture Notes in Math., Vol. 244, Springer, Berlin, 1971, pp. 123–165 (French). MR 0498581
- Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325, DOI 10.1007/978-3-540-38955-2
- Max Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197–272 (German). MR 5125, DOI 10.1007/BF02940746
- Jean-Marc Fontaine and Guy Laffaille, Construction de représentations $p$-adiques, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 4, 547–608 (1983) (French). MR 707328, DOI 10.24033/asens.1437
- Gerd Faltings, Crystalline cohomology and $p$-adic Galois-representations, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 25–80. MR 1463696
- Gerd Faltings, Integral crystalline cohomology over very ramified valuation rings, J. Amer. Math. Soc. 12 (1999), no. 1, 117–144. MR 1618483, DOI 10.1090/S0894-0347-99-00273-8
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- E. Z. Goren and F. Oort, Stratifications of Hilbert modular varieties, J. Algebraic Geom. 9 (2000), no. 1, 111–154. MR 1713522
- Mark Kisin, Crystalline representations and $F$-crystals, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 459–496. MR 2263197, DOI 10.1007/978-0-8176-4532-8_{7}
- Mark Kisin, Integral models for Shimura varieties of abelian type, J. Amer. Math. Soc. 23 (2010), no. 4, 967–1012. MR 2669706, DOI 10.1090/S0894-0347-10-00667-3
- Stacy G. Langton, Valuative criteria for families of vector bundles on algebraic varieties, Ann. of Math. (2) 101 (1975), 88–110. MR 364255, DOI 10.2307/1970987
- Giovanni Di Matteo, On admissible tensor products in $p$-adic Hodge theory, Compos. Math. 149 (2013), no. 3, 417–429. MR 3040745, DOI 10.1112/S0010437X1200070X
- Ben Moonen, Models of Shimura varieties in mixed characteristics, Galois representations in arithmetic algebraic geometry (Durham, 1996) London Math. Soc. Lecture Note Ser., vol. 254, Cambridge Univ. Press, Cambridge, 1998, pp. 267–350. MR 1696489, DOI 10.1017/CBO9780511662010.008
- D. Mumford, A note of Shimura’s paper “Discontinuous groups and abelian varieties”, Math. Ann. 181 (1969), 345–351. MR 248146, DOI 10.1007/BF01350672
- Rutger Noot, Abelian varieties with $l$-adic Galois representation of Mumford’s type, J. Reine Angew. Math. 519 (2000), 155–169. MR 1739726, DOI 10.1515/crll.2000.010
- Rutger Noot, On Mumford’s families of abelian varieties, J. Pure Appl. Algebra 157 (2001), no. 1, 87–106. MR 1809220, DOI 10.1016/S0022-4049(99)00174-7
- Peter Norman, An algorithm for computing local moduli of abelian varieties, Ann. of Math. (2) 101 (1975), 499–509. MR 389928, DOI 10.2307/1970937
- Peter Norman and Frans Oort, Moduli of abelian varieties, Ann. of Math. (2) 112 (1980), no. 3, 413–439. MR 595202, DOI 10.2307/1971152
- Arthur Ogus, A $p$-adic analogue of the Chowla-Selberg formula, $p$-adic analysis (Trento, 1989) Lecture Notes in Math., vol. 1454, Springer, Berlin, 1990, pp. 319–341. MR 1094861, DOI 10.1007/BFb0091147
- Shankar Sen, Lie algebras of Galois groups arising from Hodge-Tate modules, Ann. of Math. (2) 97 (1973), 160–170. MR 314853, DOI 10.2307/1970879
- Mao Sheng, Jiajin Zhang, and Kang Zuo, Higgs bundles over the good reduction of a quaternionic Shimura curve, J. Reine Angew. Math. 671 (2012), 223–248. MR 2983201, DOI 10.1515/crelle.2011.158
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69. MR 546588
- L. Xiao, Tensor being crystalline implies each factor being crystalline up to twist, Appendix to On automorphy of certain Galois representations of $GO_4$-type by T. Liu and J.-K. Yu, 2011.
- Eckart Viehweg and Kang Zuo, A characterization of certain Shimura curves in the moduli stack of abelian varieties, J. Differential Geom. 66 (2004), no. 2, 233–287. MR 2106125
- Jean-Pierre Wintenberger, Motifs et ramification pour les points d’ordre fini des variétés abéliennes, Séminaire de Théorie des Nombres, Paris 1986–87, Progr. Math., vol. 75, Birkhäuser Boston, Boston, MA, 1988, pp. 453–471 (French). MR 990520
Additional Information
- Mao Sheng
- Affiliation: School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, People’s Republic of China
- Email: msheng@ustc.edu.cn
- Kang Zuo
- Affiliation: Institut für Mathematik, Universität Mainz, Mainz, 55099, Germany
- MR Author ID: 269893
- Email: zuok@uni-mainz.de
- Received by editor(s): September 26, 2013
- Received by editor(s) in revised form: October 27, 2013
- Published electronically: March 26, 2015
- Additional Notes: The first-named author was supported by the National Natural Science Foundation of China (Grant No. 11471298). The second-named author was supported by the SFB/TR 45 ‘Periods, Moduli Spaces and Arithmetic of Algebraic Varieties’ of the DFG
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 169-207
- MSC (2010): Primary 14G35; Secondary 14D07
- DOI: https://doi.org/10.1090/S0002-9947-2015-06312-0
- MathSciNet review: 3413860