## Diffusivity in multiple scattering systems

HTML articles powered by AMS MathViewer

- by Timothy Chumley, Renato Feres and Hong-Kun Zhang PDF
- Trans. Amer. Math. Soc.
**368**(2016), 109-148 Request permission

## Abstract:

We consider random flights of point particles inside $n$-dimensional channels of the form $\mathbb {R}^{k}\times \mathbb {B}^{n-k}$, where $\mathbb {B}^{n-k}$ is a ball of radius $r$ in dimension $n-k$. The sequence of particle velocities taken immediately after each collision with the boundary of the channel comprise a Markov chain whose transition probabilities operator $P$ is determined by a choice of (billiard-like) random mechanical model of the particle-surface interaction at the “microscopic” scale. Markov operators obtained in this way are *natural*, which means, in particular, that (1) the (at the surface) Maxwell-Boltzmann velocity distribution with a given surface temperature, when the surface model contains moving parts, or (2) the so-called Knudsen cosine law, when this model is purely geometric, is the stationary distribution of $P$.

Our central concern is the relationship between the surface scattering properties encoded in $P$ and the constant of diffusivity of a Brownian motion obtained by an appropriate limit of the random flight in the channel. We show by a suitable generalization of a central limit theorem of Kipnis and Varadhan how the diffusivity is expressed in terms of the spectrum of $P$ and compute, in the case of $2$-dimensional channels, the exact values of the diffusivity for a class of parametric microscopic surface models of the above geometric type (2).

## References

- Omer Angel, Krzysztof Burdzy, and Scott Sheffield,
*Deterministic approximations of random reflectors*, Trans. Amer. Math. Soc.**365**(2013), no. 12, 6367–6383. MR**3105755**, DOI 10.1090/S0002-9947-2013-05851-5 - G. Arya, H.-C. Chang, and E. J. Maginn.
*Knudsen diffusivity of a hard sphere in a rough slit pore*, Physical Review Letters**91**, No. 2, July 2003, 026102(4). - Hans Babovsky,
*On Knudsen flows within thin tubes*, J. Statist. Phys.**44**(1986), no. 5-6, 865–878. MR**858260**, DOI 10.1007/BF01011911 - Péter Bálint and Sébastien Gouëzel,
*Limit theorems in the stadium billiard*, Comm. Math. Phys.**263**(2006), no. 2, 461–512. MR**2207652**, DOI 10.1007/s00220-005-1511-6 - Patrick Billingsley,
*Convergence of probability measures*, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR**0233396** - Christoph Börgers, Claude Greengard, and Enrique Thomann,
*The diffusion limit of free molecular flow in thin plane channels*, SIAM J. Appl. Math.**52**(1992), no. 4, 1057–1075. MR**1174046**, DOI 10.1137/0152062 - Richard C. Bradley Jr.,
*A sufficient condition for linear growth of variances in a stationary random sequence*, Proc. Amer. Math. Soc.**83**(1981), no. 3, 586–589. MR**627698**, DOI 10.1090/S0002-9939-1981-0627698-5 - Carlo Cercignani and David H. Sattinger,
*Scaling limits and models in physical processes*, DMV Seminar, vol. 28, Birkhäuser Verlag, Basel, 1998. MR**1661768**, DOI 10.1007/978-3-0348-8810-3 - F. Celestini and F. Mortessagne,
*Cosine law at the atomic scale: toward realistic simulations of Knudsen diffusion*, Physical Review E**77**(2008), 021202. - Nikolai Chernov and Roberto Markarian,
*Chaotic billiards*, Mathematical Surveys and Monographs, vol. 127, American Mathematical Society, Providence, RI, 2006. MR**2229799**, DOI 10.1090/surv/127 - T. Chumley, S. Cook, and R. Feres,
*From billiards to thermodynamics*, Comput. Math. Appl.**65**(2013), no. 10, 1596–1613. MR**3061725**, DOI 10.1016/j.camwa.2012.09.004 - Francis Comets, Serguei Popov, Gunter M. Schütz, and Marina Vachkovskaia,
*Billiards in a general domain with random reflections*, Arch. Ration. Mech. Anal.**191**(2009), no. 3, 497–537. MR**2481068**, DOI 10.1007/s00205-008-0120-x - Francis Comets, Serguei Popov, Gunter M. Schütz, and Marina Vachkovskaia,
*Knudsen gas in a finite random tube: transport diffusion and first passage properties*, J. Stat. Phys.**140**(2010), no. 5, 948–984. MR**2673342**, DOI 10.1007/s10955-010-0023-8 - Scott Cook and Renato Feres,
*Random billiards with wall temperature and associated Markov chains*, Nonlinearity**25**(2012), no. 9, 2503–2541. MR**2967115**, DOI 10.1088/0951-7715/25/9/2503 - Renato Feres,
*Random walks derived from billiards*, Dynamics, ergodic theory, and geometry, Math. Sci. Res. Inst. Publ., vol. 54, Cambridge Univ. Press, Cambridge, 2007, pp. 179–222. MR**2369447**, DOI 10.1017/CBO9780511755187.008 - Renato Feres and Hong-Kun Zhang,
*The spectrum of the billiard Laplacian of a family of random billiards*, J. Stat. Phys.**141**(2010), no. 6, 1039–1054. MR**2740402**, DOI 10.1007/s10955-010-0079-5 - Renato Feres and Hong-Kun Zhang,
*Spectral gap for a class of random billiards*, Comm. Math. Phys.**313**(2012), no. 2, 479–515. MR**2942958**, DOI 10.1007/s00220-012-1469-0 - Renato Feres, Jasmine Ng, and Hong-Kun Zhang,
*Multiple scattering in random mechanical systems and diffusion approximation*, Comm. Math. Phys.**323**(2013), no. 2, 713–745. MR**3096536**, DOI 10.1007/s00220-013-1788-9 - S. Harris,
*An introduction to the theory of the Boltzmann equation*, Dover, 1999. - C. Kipnis and S. R. S. Varadhan,
*Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions*, Comm. Math. Phys.**104**(1986), no. 1, 1–19. MR**834478**, DOI 10.1007/BF01210789 - Peter E. Kloeden and Eckhard Platen,
*Numerical solution of stochastic differential equations*, Applications of Mathematics (New York), vol. 23, Springer-Verlag, Berlin, 1992. MR**1214374**, DOI 10.1007/978-3-662-12616-5 - G. Marin and G. S. Yablonsky,
*Kinetics of chemical reactions*, Wiley-VCH, 2011. - Sean Meyn and Richard L. Tweedie,
*Markov chains and stochastic stability*, 2nd ed., Cambridge University Press, Cambridge, 2009. With a prologue by Peter W. Glynn. MR**2509253**, DOI 10.1017/CBO9780511626630 - Bernt Øksendal,
*Stochastic differential equations*, 5th ed., Universitext, Springer-Verlag, Berlin, 1998. An introduction with applications. MR**1619188**, DOI 10.1007/978-3-662-03620-4 - Daniel W. Stroock and S. R. Srinivasa Varadhan,
*Multidimensional diffusion processes*, Classics in Mathematics, Springer-Verlag, Berlin, 2006. Reprint of the 1997 edition. MR**2190038** - Luke Tierney,
*A note on Metropolis-Hastings kernels for general state spaces*, Ann. Appl. Probab.**8**(1998), no. 1, 1–9. MR**1620401**, DOI 10.1214/aoap/1027961031 - Joachim Weidmann,
*Linear operators in Hilbert spaces*, Graduate Texts in Mathematics, vol. 68, Springer-Verlag, New York-Berlin, 1980. Translated from the German by Joseph Szücs. MR**566954**, DOI 10.1007/978-1-4612-6027-1 - Ward Whitt,
*Weak convergence of probability measures on the function space $C[0,\,\infty )$*, Ann. Math. Statist.**41**(1970), 939–944. MR**261646**, DOI 10.1214/aoms/1177696970

## Additional Information

**Timothy Chumley**- Affiliation: Department of Mathematics, Washington University, Campus Box 1146, St. Louis, Missouri 63130
- ORCID: 0000-0003-2393-831X
**Renato Feres**- Affiliation: Department of Mathematics, Washington University, Campus Box 1146, St. Louis, Missouri 63130
- MR Author ID: 262178
**Hong-Kun Zhang**- Affiliation: Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003
- MR Author ID: 626279
- Received by editor(s): July 8, 2013
- Received by editor(s) in revised form: October 20, 2013
- Published electronically: April 15, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**368**(2016), 109-148 - MSC (2010): Primary 60F05; Secondary 82B40
- DOI: https://doi.org/10.1090/tran/6325
- MathSciNet review: 3413858