Gradient estimates of harmonic functions and transition densities for Lévy processes
HTML articles powered by AMS MathViewer
- by Tadeusz Kulczycki and Michał Ryznar PDF
- Trans. Amer. Math. Soc. 368 (2016), 281-318 Request permission
Abstract:
We prove gradient estimates for harmonic functions with respect to a $d$-dimensional unimodal pure-jump Lévy process under some mild assumptions on the density of its Lévy measure. These assumptions allow for a construction of an unimodal Lévy process in $\mathbb {R}^{d+2}$ with the same characteristic exponent as the original process. The relationship between the two processes provides a fruitful source of gradient estimates of transition densities. We also construct another process called a difference process which is very useful in the analysis of differential properties of harmonic functions. Our results extend the gradient estimates known for isotropic stable processes to a wide family of isotropic pure-jump processes, including a large class of subordinate Brownian motions.References
- R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757
- Krzysztof Bogdan, Tomasz Grzywny, and MichałRyznar, Density and tails of unimodal convolution semigroups, J. Funct. Anal. 266 (2014), no. 6, 3543–3571. MR 3165234, DOI 10.1016/j.jfa.2014.01.007
- K. Bogdan, T. Grzywny, M. Ryznar, Barriers, exit time and survival probability for unimodal Lévy processes, Probab. Theory Relat. Fields (2014), DOI 10.1007/s00440-014-0568-6.
- Krzysztof Bogdan and Tomasz Jakubowski, Estimates of heat kernel of fractional Laplacian perturbed by gradient operators, Comm. Math. Phys. 271 (2007), no. 1, 179–198. MR 2283957, DOI 10.1007/s00220-006-0178-y
- K. Bogdan, T. Kulczycki, and Adam Nowak, Gradient estimates for harmonic and $q$-harmonic functions of symmetric stable processes, Illinois J. Math. 46 (2002), no. 2, 541–556. MR 1936936, DOI 10.1215/ijm/1258136210
- Krzysztof Bogdan, Takashi Kumagai, and Mateusz Kwaśnicki, Boundary Harnack inequality for Markov processes with jumps, Trans. Amer. Math. Soc. 367 (2015), no. 1, 477–517. MR 3271268, DOI 10.1090/S0002-9947-2014-06127-8
- René Carmona, Path integrals for relativistic Schrödinger operators, Schrödinger operators (Sønderborg, 1988) Lecture Notes in Phys., vol. 345, Springer, Berlin, 1989, pp. 65–92. MR 1037317, DOI 10.1007/3-540-51783-9_{1}7
- Zhen-Qing Chen, Panki Kim, and Renming Song, Dirichlet heat kernel estimates for fractional Laplacian with gradient perturbation, Ann. Probab. 40 (2012), no. 6, 2483–2538. MR 3050510, DOI 10.1214/11-AOP682
- Zhen-Qing Chen, Panki Kim, and Renming Song, Dirichlet heat kernel estimates for rotationally symmetric Lévy processes, Proc. Lond. Math. Soc. (3) 109 (2014), no. 1, 90–120. MR 3237737, DOI 10.1112/plms/pdt068
- Zhen-Qing Chen, Panki Kim, and Renming Song, Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 5, 1307–1329. MR 2677618, DOI 10.4171/JEMS/231
- Kai Lai Chung and Zhong Xin Zhao, From Brownian motion to Schrödinger’s equation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 312, Springer-Verlag, Berlin, 1995. MR 1329992, DOI 10.1007/978-3-642-57856-4
- M. Cranston and Z. Zhao, Some regularity results and eigenfunction estimates for the Schrödinger operator, Diffusion processes and related problems in analysis, Vol. I (Evanston, IL, 1989) Progr. Probab., vol. 22, Birkhäuser Boston, Boston, MA, 1990, pp. 139–147. MR 1110161, DOI 10.1007/978-1-4684-0564-4_{9}
- Loukas Grafakos and Gerald Teschl, On Fourier transforms of radial functions and distributions, J. Fourier Anal. Appl. 19 (2013), no. 1, 167–179. MR 3019774, DOI 10.1007/s00041-012-9242-5
- Tomasz Grzywny, On Harnack inequality and Hölder regularity for isotropic unimodal Lévy processes, Potential Anal. 41 (2014), no. 1, 1–29. MR 3225805, DOI 10.1007/s11118-013-9360-y
- Nobuyuki Ikeda and Shinzo Watanabe, On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes, J. Math. Kyoto Univ. 2 (1962), 79–95. MR 142153, DOI 10.1215/kjm/1250524975
- K. Kaleta, P. Sztonyk, Estimates of transition densities and their derivatives for jump Lévy processes, arXiv:1307.1302.
- Panki Kim and Ante Mimica, Harnack inequalities for subordinate Brownian motions, Electron. J. Probab. 17 (2012), no. 37, 23. MR 2928720, DOI 10.1214/ejp.v17-1930
- Panki Kim, Renming Song, and Zoran Vondraček, Potential theory of subordinate Brownian motions revisited, Stochastic analysis and applications to finance, Interdiscip. Math. Sci., vol. 13, World Sci. Publ., Hackensack, NJ, 2012, pp. 243–290. MR 2986850, DOI 10.1142/9789814383585_{0}013
- Panki Kim, Renming Song, and Zoran Vondraček, Two-sided Green function estimates for killed subordinate Brownian motions, Proc. Lond. Math. Soc. (3) 104 (2012), no. 5, 927–958. MR 2928332, DOI 10.1112/plms/pdr050
- Tadeusz Kulczycki, Gradient estimates of $q$-harmonic functions of fractional Schrödinger operator, Potential Anal. 39 (2013), no. 1, 69–98. MR 3065315, DOI 10.1007/s11118-012-9322-9
- Tadeusz Kulczycki and Bartłomiej Siudeja, Intrinsic ultracontractivity of the Feynman-Kac semigroup for relativistic stable processes, Trans. Amer. Math. Soc. 358 (2006), no. 11, 5025–5057. MR 2231884, DOI 10.1090/S0002-9947-06-03931-6
- Elliott H. Lieb and Robert Seiringer, The stability of matter in quantum mechanics, Cambridge University Press, Cambridge, 2010. MR 2583992
- P. W. Millar, First passage distributions of processes with independent increments, Ann. Probability 3 (1975), 215–233. MR 368177, DOI 10.1214/aop/1176996394
- Ante Mimica, Harnack inequality and Hölder regularity estimates for a Lévy process with small jumps of high intensity, J. Theoret. Probab. 26 (2013), no. 2, 329–348. MR 3055806, DOI 10.1007/s10959-011-0361-8
- MichałRyznar, Estimates of Green function for relativistic $\alpha$-stable process, Potential Anal. 17 (2002), no. 1, 1–23. MR 1906405, DOI 10.1023/A:1015231913916
- Ken-iti Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999. Translated from the 1990 Japanese original; Revised by the author. MR 1739520
- René L. Schilling, Growth and Hölder conditions for the sample paths of Feller processes, Probab. Theory Related Fields 112 (1998), no. 4, 565–611. MR 1664705, DOI 10.1007/s004400050201
- René L. Schilling, PawełSztonyk, and Jian Wang, Coupling property and gradient estimates of Lévy processes via the symbol, Bernoulli 18 (2012), no. 4, 1128–1149. MR 2995789, DOI 10.3150/11-BEJ375
- René L. Schilling, Renming Song, and Zoran Vondraček, Bernstein functions, 2nd ed., De Gruyter Studies in Mathematics, vol. 37, Walter de Gruyter & Co., Berlin, 2012. Theory and applications. MR 2978140, DOI 10.1515/9783110269338
- Luis Silvestre, On the differentiability of the solution to an equation with drift and fractional diffusion, Indiana Univ. Math. J. 61 (2012), no. 2, 557–584. MR 3043588, DOI 10.1512/iumj.2012.61.4568
- PawełSztonyk, On harmonic measure for Lévy processes, Probab. Math. Statist. 20 (2000), no. 2, Acta Univ. Wratislav. No. 2256, 383–390. MR 1825650
- PawełSztonyk, Regularity of harmonic functions for anisotropic fractional Laplacians, Math. Nachr. 283 (2010), no. 2, 289–311. MR 2604123, DOI 10.1002/mana.200711116
- Toshiro Watanabe, The isoperimetric inequality for isotropic unimodal Lévy processes, Z. Wahrsch. Verw. Gebiete 63 (1983), no. 4, 487–499. MR 705619, DOI 10.1007/BF00533722
Additional Information
- Tadeusz Kulczycki
- Affiliation: Institute of Mathematics and Computer Science, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
- Email: Tadeusz.Kulczycki@pwr.wroc.pl
- Michał Ryznar
- Affiliation: Institute of Mathematics and Computer Science, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
- Email: Michal.Ryznar@pwr.wroc.pl
- Received by editor(s): August 1, 2013
- Received by editor(s) in revised form: October 31, 2013
- Published electronically: May 13, 2015
- Additional Notes: This research was supported in part by NCN grant no. 2011/03/B/ST1/00423.
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 281-318
- MSC (2010): Primary 31B05, 60J45; Secondary 60J50, 60J75
- DOI: https://doi.org/10.1090/tran/6333
- MathSciNet review: 3413864