Hopf algebras having a dense big cell
HTML articles powered by AMS MathViewer
- by Julien Bichon and Simon Riche PDF
- Trans. Amer. Math. Soc. 368 (2016), 515-538 Request permission
Abstract:
We discuss some axioms that ensure that a Hopf algebra has its simple comodules classified using an analogue of the Borel–Weil construction. More precisely we show that a Hopf algebra having a dense big cell satisfies the above requirement. This method has its roots in the work of Parshall and Wang in the case of $q$-deformed quantum groups $\textrm {GL}$ and $\textrm {SL}$. Here we examine the example of universal cosovereign Hopf algebras, for which the weight group is the free group on two generators.References
- Nicolás Andruskiewitsch and Hans-Jürgen Schneider, On the classification of finite-dimensional pointed Hopf algebras, Ann. of Math. (2) 171 (2010), no. 1, 375–417. MR 2630042, DOI 10.4007/annals.2010.171.375
- Michael Artin, William Schelter, and John Tate, Quantum deformations of $\textrm {GL}_n$, Comm. Pure Appl. Math. 44 (1991), no. 8-9, 879–895. MR 1127037, DOI 10.1002/cpa.3160440804
- Teodor Banica, Le groupe quantique compact libre $\textrm {U}(n)$, Comm. Math. Phys. 190 (1997), no. 1, 143–172 (French, with English summary). MR 1484551, DOI 10.1007/s002200050237
- Teodor Banica and Julien Bichon, Free product formulae for quantum permutation groups, J. Inst. Math. Jussieu 6 (2007), no. 3, 381–414. MR 2329759, DOI 10.1017/S1474748007000072
- Teodor Banica and Benoît Collins, Integration over quantum permutation groups, J. Funct. Anal. 242 (2007), no. 2, 641–657. MR 2274824, DOI 10.1016/j.jfa.2006.09.005
- Teodor Banica, Stephen Curran, and Roland Speicher, De Finetti theorems for easy quantum groups, Ann. Probab. 40 (2012), no. 1, 401–435. MR 2917777, DOI 10.1214/10-AOP619
- Teodor Banica and Roland Speicher, Liberation of orthogonal Lie groups, Adv. Math. 222 (2009), no. 4, 1461–1501. MR 2554941, DOI 10.1016/j.aim.2009.06.009
- Julien Bichon, Cosovereign Hopf algebras, J. Pure Appl. Algebra 157 (2001), no. 2-3, 121–133. MR 1812048, DOI 10.1016/S0022-4049(00)00024-4
- Julien Bichon, Co-representation theory of universal co-sovereign Hopf algebras, J. Lond. Math. Soc. (2) 75 (2007), no. 1, 83–98. MR 2302731, DOI 10.1112/jlms/jdl007
- Julien Bichon, Hopf-Galois objects and cogroupoids, Rev. Un. Mat. Argentina 55 (2014), no. 2, 11–69. MR 3285340
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Ken A. Brown and Ken R. Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2002. MR 1898492, DOI 10.1007/978-3-0348-8205-7
- Alexandru Chirvasitu, Grothendieck rings of universal quantum groups, J. Algebra 349 (2012), 80–97. MR 2853627, DOI 10.1016/j.jalgebra.2011.09.020
- E. E. Demidov, Yu. I. Manin, E. E. Mukhin, and D. V. Zhdanovich, Nonstandard quantum deformations of $\textrm {GL}(n)$ and constant solutions of the Yang-Baxter equation, Progr. Theoret. Phys. Suppl. 102 (1990), 203–218 (1991). Common trends in mathematics and quantum field theories (Kyoto, 1990). MR 1182166, DOI 10.1143/PTPS.102.203
- Yukio Doi, Braided bialgebras and quadratic bialgebras, Comm. Algebra 21 (1993), no. 5, 1731–1749. MR 1213985, DOI 10.1080/00927879308824649
- V. G. Drinfel′d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820. MR 934283
- Michel Dubois-Violette and Guy Launer, The quantum group of a nondegenerate bilinear form, Phys. Lett. B 245 (1990), no. 2, 175–177. MR 1068703, DOI 10.1016/0370-2693(90)90129-T
- Pavel Etingof and Shlomo Gelaki, On cotriangular Hopf algebras, Amer. J. Math. 123 (2001), no. 4, 699–713. MR 1844575, DOI 10.1353/ajm.2001.0025
- Gastón Andrés García, Quantum subgroups of $\textrm {GL}_{\alpha ,\beta }(n)$, J. Algebra 324 (2010), no. 6, 1392–1428. MR 2671812, DOI 10.1016/j.jalgebra.2010.07.020
- D. I. Gurevich, Algebraic aspects of the quantum Yang-Baxter equation, Algebra i Analiz 2 (1990), no. 4, 119–148 (Russian); English transl., Leningrad Math. J. 2 (1991), no. 4, 801–828. MR 1080202
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- Jens Carsten Jantzen, Lectures on quantum groups, Graduate Studies in Mathematics, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1359532, DOI 10.1090/gsm/006
- Michio Jimbo, A $q$-difference analogue of $U({\mathfrak {g}})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63–69. MR 797001, DOI 10.1007/BF00704588
- Anatoli Klimyk and Konrad Schmüdgen, Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997. MR 1492989, DOI 10.1007/978-3-642-60896-4
- Claus Köstler and Roland Speicher, A noncommutative de Finetti theorem: invariance under quantum permutations is equivalent to freeness with amalgamation, Comm. Math. Phys. 291 (2009), no. 2, 473–490. MR 2530168, DOI 10.1007/s00220-009-0802-8
- Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR 1243637, DOI 10.1090/cbms/082
- Alexandru Nica and Roland Speicher, Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series, vol. 335, Cambridge University Press, Cambridge, 2006. MR 2266879, DOI 10.1017/CBO9780511735127
- Brian Parshall and Jian Pan Wang, Quantum linear groups, Mem. Amer. Math. Soc. 89 (1991), no. 439, vi+157. MR 1048073, DOI 10.1090/memo/0439
- Peter Schauenburg, Hopf bi-Galois extensions, Comm. Algebra 24 (1996), no. 12, 3797–3825. MR 1408508, DOI 10.1080/00927879608825788
- Hans-Jürgen Schneider, Normal basis and transitivity of crossed products for Hopf algebras, J. Algebra 152 (1992), no. 2, 289–312. MR 1194305, DOI 10.1016/0021-8693(92)90034-J
- Alfons Van Daele and Shuzhou Wang, Universal quantum groups, Internat. J. Math. 7 (1996), no. 2, 255–263. MR 1382726, DOI 10.1142/S0129167X96000153
- Shuzhou Wang, Free products of compact quantum groups, Comm. Math. Phys. 167 (1995), no. 3, 671–692. MR 1316765, DOI 10.1007/BF02101540
- Shuzhou Wang, Problems in the theory of quantum groups, Quantum groups and quantum spaces (Warsaw, 1995) Banach Center Publ., vol. 40, Polish Acad. Sci. Inst. Math., Warsaw, 1997, pp. 67–78. MR 1481735
- Shuzhou Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), no. 1, 195–211. MR 1637425, DOI 10.1007/s002200050385
- S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613–665. MR 901157, DOI 10.1007/BF01219077
- S. Zakrzewski, A Hopf star-algebra of polynomials on the quantum $\textrm {SL}(2,\textbf {R})$ for a “unitary” $R$-matrix, Lett. Math. Phys. 22 (1991), no. 4, 287–289. MR 1131752, DOI 10.1007/BF00405603
Additional Information
- Julien Bichon
- Affiliation: Laboratoire de Mathématiques (UMR 6620), CNRS, Université Blaise Pascal, Complexe universitaire des Cézeaux, 63171 Aubière Cedex, France
- MR Author ID: 633469
- Email: Julien.Bichon@math.univ-bpclermont.fr
- Simon Riche
- Affiliation: Laboratoire de Mathématiques (UMR 6620), CNRS, Université Blaise Pascal, Complexe universitaire des Cézeaux, 63171 Aubière Cedex, France
- MR Author ID: 834430
- Email: Simon.Riche@math.univ-bpclermont.fr
- Received by editor(s): July 18, 2013
- Received by editor(s) in revised form: November 20, 2013
- Published electronically: May 27, 2015
- Additional Notes: The second author was supported by ANR Grants No. ANR-09-JCJC-0102-01 and No. ANR-2010-BLAN-110-02.
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 515-538
- MSC (2010): Primary 20G42, 16T05
- DOI: https://doi.org/10.1090/tran/6335
- MathSciNet review: 3413872