On cubic elliptic varieties
HTML articles powered by AMS MathViewer
- by Jürgen Hausen, Antonio Laface, Andrea Luigi Tironi and Luca Ugaglia PDF
- Trans. Amer. Math. Soc. 368 (2016), 689-708 Request permission
Abstract:
Let $\pi \colon X\to \mathbb {P}^{n-1}$ be an elliptic fibration obtained by resolving the indeterminacy of the projection of a cubic hypersurface $Y$ of $\mathbb {P}^{n+1}$ from a line $L$ not contained in $Y$. We prove that the Mordell-Weil group of $\pi$ is finite if and only if the Cox ring of $X$ is finitely generated. We also provide a presentation of the Cox ring of $X$ when it is finitely generated.References
- Michela Artebani, Jürgen Hausen, and Antonio Laface, On Cox rings of K3 surfaces, Compos. Math. 146 (2010), no. 4, 964–998. MR 2660680, DOI 10.1112/S0010437X09004576
- Ivan Arzhantsev, Ulrich Derenthal, Jürgen Hausen, and Antonio Laface, Cox rings, Cambridge Studies in Advanced Mathematics, vol. 144, Cambridge University Press, Cambridge, 2015. MR 3307753
- Hendrik Bäker, Jürgen Hausen, and Simon Keicher, On Chow quotients of torus actions, arXiv:1203.3759v1 (2012), available at http://arxiv.org/pdf/1203.3759.pdf.
- Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven, Compact complex surfaces, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4, Springer-Verlag, Berlin, 2004. MR 2030225, DOI 10.1007/978-3-642-57739-0
- Bertini theorems, Encyclopedia of Mathematics, available at http://www.encyclopediaofmath.org/index.php?title=Bertini_theorems\&oldid=23762.
- Filip Cools and Marc Coppens, Star points on smooth hypersurfaces, J. Algebra 323 (2010), no. 1, 261–286. MR 2564838, DOI 10.1016/j.jalgebra.2009.09.010
- Izzet Coskun, Surfaces of low degree containing a canonical curve, Computational algebraic and analytic geometry, Contemp. Math., vol. 572, Amer. Math. Soc., Providence, RI, 2012, pp. 57–70. MR 2953423, DOI 10.1090/conm/572/11358
- Igor Dolgachev, Integral quadratic forms: applications to algebraic geometry (after V. Nikulin), Bourbaki seminar, Vol. 1982/83, Astérisque, vol. 105, Soc. Math. France, Paris, 1983, pp. 251–278. MR 728992
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Jürgen Hausen, Cox rings and combinatorics. II, Mosc. Math. J. 8 (2008), no. 4, 711–757, 847 (English, with English and Russian summaries). MR 2499353, DOI 10.17323/1609-4514-2008-8-4-711-757
- Yi Hu and Sean Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331–348. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786494, DOI 10.1307/mmj/1030132722
- Yujiro Kawamata, Katsumi Matsuda, and Kenji Matsuki, Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 283–360. MR 946243, DOI 10.2969/aspm/01010283
- Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471, DOI 10.1007/978-3-642-18808-4
- V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238 (Russian). MR 525944
- Ichiro Shimada, On elliptic $K3$ surfaces, Michigan Math. J. 47 (2000), no. 3, 423–446. MR 1813537, DOI 10.1307/mmj/1030132587
- V.V. Shokurov, The nonvanishing theorem, Math. USSR-Izv. 26 (1986), 591–604., DOI 10.1070/IM1986v026n03ABEH001160
- Rania Wazir, Arithmetic on elliptic threefolds, Compos. Math. 140 (2004), no. 3, 567–580. MR 2041769, DOI 10.1112/S0010437X03000381
Additional Information
- Jürgen Hausen
- Affiliation: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
- MR Author ID: 361664
- Email: juergen.hausen@uni-tuebingen.de
- Antonio Laface
- Affiliation: Departamento de Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
- MR Author ID: 634848
- Email: alaface@udec.cl
- Andrea Luigi Tironi
- Affiliation: Departamento de Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
- MR Author ID: 677961
- Email: atironi@udec.cl
- Luca Ugaglia
- Affiliation: Dipartimento di Matematica e Informatica, Università degli studi di Palermo, Via Archirafi 34, 90123 Palermo, Italy
- Email: luca.ugaglia@unipa.it
- Received by editor(s): August 14, 2013
- Received by editor(s) in revised form: December 2, 2013
- Published electronically: May 27, 2015
- Additional Notes: The second author was partially supported by Proyecto FONDECYT Regular N. 1110096
The third author was partially supported by Proyecto DIUC 211.013.036-1.0
The fourth author was partially supported by Università di Palermo (2012-ATE-0446) - © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 689-708
- MSC (2010): Primary 14C20, 14Q15; Secondary 14E05, 14N25
- DOI: https://doi.org/10.1090/tran/6353
- MathSciNet review: 3413880