The topological complexity of Cantor attractors for unimodal interval maps
HTML articles powered by AMS MathViewer
- by Simin Li and Weixiao Shen PDF
- Trans. Amer. Math. Soc. 368 (2016), 659-688 Request permission
Abstract:
For a non-flat $C^3$ unimodal map with a Cantor attractor, we show that for any open cover $\mathcal U$ of this attractor, the complexity function $p(\mathcal U, n)$ is of order $n\log n$. In the appendix, we construct a non-renormalizable map with a Cantor attractor for which $p(\mathcal {U}, n)$ is bounded from above for any open cover $\mathcal {U}$.References
- F. Blanchard, B. Host, and A. Maass, Topological complexity, Ergodic Theory Dynam. Systems 20 (2000), no. 3, 641–662. MR 1764920, DOI 10.1017/S0143385700000341
- Louis Block, James Keesling, and MichałMisiurewicz, Strange adding machines, Ergodic Theory Dynam. Systems 26 (2006), no. 3, 673–682. MR 2237463, DOI 10.1017/S0143385705000635
- A. M. Blokh and M. Yu. Lyubich, Measurable dynamics of $S$-unimodal maps of the interval, Ann. Sci. École Norm. Sup. (4) 24 (1991), no. 5, 545–573. MR 1132757, DOI 10.24033/asens.1636
- Henk Bruin, Topological conditions for the existence of absorbing Cantor sets, Trans. Amer. Math. Soc. 350 (1998), no. 6, 2229–2263. MR 1458316, DOI 10.1090/S0002-9947-98-02109-6
- H. Bruin, G. Keller, T. Nowicki, and S. van Strien, Wild Cantor attractors exist, Ann. of Math. (2) 143 (1996), no. 1, 97–130. MR 1370759, DOI 10.2307/2118654
- Henk Bruin, Gerhard Keller, and Matthias St. Pierre, Adding machines and wild attractors, Ergodic Theory Dynam. Systems 17 (1997), no. 6, 1267–1287. MR 1488317, DOI 10.1017/S0143385797086392
- H. Bruin, J. Rivera-Letelier, W. Shen, and S. van Strien, Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math. 172 (2008), no. 3, 509–533. MR 2393079, DOI 10.1007/s00222-007-0108-4
- Henk Bruin, Weixiao Shen, and Sebastian van Strien, Existence of unique SRB-measures is typical for real unicritical polynomial families, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 3, 381–414 (English, with English and French summaries). MR 2265674, DOI 10.1016/j.ansens.2006.02.001
- H. Bruin and O. Volkova, The complexity of Fibonacci-like kneading sequences, Theoret. Comput. Sci. 337 (2005), no. 1-3, 379–389. MR 2141232, DOI 10.1016/j.tcs.2005.02.001
- Jorge Buescu and Ian Stewart, Liapunov stability and adding machines, Ergodic Theory Dynam. Systems 15 (1995), no. 2, 271–290. MR 1332404, DOI 10.1017/S0143385700008373
- Sébastien Ferenczi and Kyewon Koh Park, Entropy dimensions and a class of constructive examples, Discrete Contin. Dyn. Syst. 17 (2007), no. 1, 133–141. MR 2257422, DOI 10.3934/dcds.2007.17.133
- T. N. T. Goodman, Topological sequence entropy, Proc. London Math. Soc. (3) 29 (1974), 331–350. MR 356009, DOI 10.1112/plms/s3-29.2.331
- Dou Dou, Wen Huang, and Kyewon Koh Park, Entropy dimension of topological dynamical systems, Trans. Amer. Math. Soc. 363 (2011), no. 2, 659–680. MR 2728582, DOI 10.1090/S0002-9947-2010-04906-2
- Jacek Graczyk, Duncan Sands, and Grzegorz Świa̧tek, Metric attractors for smooth unimodal maps, Ann. of Math. (2) 159 (2004), no. 2, 725–740. MR 2081438, DOI 10.4007/annals.2004.159.725
- W. Huang, S. M. Li, S. Shao, and X. D. Ye, Null systems and sequence entropy pairs, Ergodic Theory Dynam. Systems 23 (2003), no. 5, 1505–1523. MR 2018610, DOI 10.1017/S0143385702001724
- O. S. Kozlovski, Getting rid of the negative Schwarzian derivative condition, Ann. of Math. (2) 152 (2000), no. 3, 743–762. MR 1815700, DOI 10.2307/2661353
- Simin Li and Weixiao Shen, Hausdorff dimension of Cantor attractors in one-dimensional dynamics, Invent. Math. 171 (2008), no. 2, 345–387. MR 2367023, DOI 10.1007/s00222-007-0083-9
- Mikhail Lyubich and John Milnor, The Fibonacci unimodal map, J. Amer. Math. Soc. 6 (1993), no. 2, 425–457. MR 1182670, DOI 10.1090/S0894-0347-1993-1182670-0
- Ricardo Mañé, Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys. 100 (1985), no. 4, 495–524. MR 806250, DOI 10.1007/BF01217727
- Marco Martens, Distortion results and invariant Cantor sets of unimodal maps, Ergodic Theory Dynam. Systems 14 (1994), no. 2, 331–349. MR 1279474, DOI 10.1017/S0143385700007902
- Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171, DOI 10.1007/978-3-642-78043-1
- John Milnor, On the concept of attractor, Comm. Math. Phys. 99 (1985), no. 2, 177–195. MR 790735, DOI 10.1007/BF01212280
- T. Nowicki, S. van Strien, Polynomial maps with a Julia set of positive measure, arXiv:math/9402215.
- Sebastian van Strien and Edson Vargas, Real bounds, ergodicity and negative Schwarzian for multimodal maps, J. Amer. Math. Soc. 17 (2004), no. 4, 749–782. MR 2083467, DOI 10.1090/S0894-0347-04-00463-1
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108, DOI 10.1007/978-1-4612-5775-2
Additional Information
- Simin Li
- Affiliation: Department of Mathematics, University of Science and Technology of China, and Wu Wen-Tsun Key Laboratory of Mathematics, USTC, Hefei, 230026, People’s Republic of China
- Email: lsm@ustc.edu.cn
- Weixiao Shen
- Affiliation: Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, Singapore 119076
- Email: matsw@nus.edu.sg
- Received by editor(s): December 16, 2012
- Received by editor(s) in revised form: December 2, 2013
- Published electronically: February 3, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 659-688
- MSC (2010): Primary 37E05; Secondary 37C70, 37B40
- DOI: https://doi.org/10.1090/S0002-9947-2015-06372-7
- MathSciNet review: 3413879