Noncommutative mirror symmetry for punctured surfaces
HTML articles powered by AMS MathViewer
- by Raf Bocklandt; With an appendix by Mohammed Abouzaid PDF
- Trans. Amer. Math. Soc. 368 (2016), 429-469 Request permission
Abstract:
In 2013, Abouzaid, Auroux, Efimov, Katzarkov and Orlov showed that the wrapped Fukaya categories of punctured spheres and finite unbranched covers of punctured spheres are derived equivalent to the categories of singularities of a superpotential on certain crepant resolutions of toric 3 dimensional singularities. We generalize this result to other punctured Riemann surfaces and reformulate it in terms of certain noncommutative algebras coming from dimer models. In particular, given any consistent dimer model we can look at a subcategory of noncommutative matrix factorizations and show that this category is $\mathtt {A}_\infty$-isomorphic to a subcategory of the wrapped Fukaya category of a punctured Riemann surface. The connection between the dimer model and the punctured Riemann surface then has a nice interpretation in terms of a duality on dimer models.References
- Mohammed Abouzaid, Morse homology, tropical geometry, and homological mirror symmetry for toric varieties, Selecta Math. (N.S.) 15 (2009), no. 2, 189–270. MR 2529936, DOI 10.1007/s00029-009-0492-2
- Mohammed Abouzaid, Denis Auroux, Alexander I. Efimov, Ludmil Katzarkov, and Dmitri Orlov, Homological mirror symmetry for punctured spheres, J. Amer. Math. Soc. 26 (2013), no. 4, 1051–1083. MR 3073884, DOI 10.1090/S0894-0347-2013-00770-5
- Mohammed Abouzaid and Paul Seidel, An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010), no. 2, 627–718. MR 2602848, DOI 10.2140/gt.2010.14.627
- Ibrahim Assem, Thomas Brüstle, Gabrielle Charbonneau-Jodoin, and Pierre-Guy Plamondon, Gentle algebras arising from surface triangulations, Algebra Number Theory 4 (2010), no. 2, 201–229. MR 2592019, DOI 10.2140/ant.2010.4.201
- Ibrahim Assem and Andrzej Skowroński, Iterated tilted algebras of type $\tilde \textbf {A}_n$, Math. Z. 195 (1987), no. 2, 269–290. MR 892057, DOI 10.1007/BF01166463
- Denis Auroux, Ludmil Katzarkov, and Dmitri Orlov, Mirror symmetry for weighted projective planes and their noncommutative deformations, Ann. of Math. (2) 167 (2008), no. 3, 867–943. MR 2415388, DOI 10.4007/annals.2008.167.867
- Denis Auroux, Ludmil Katzarkov, and Dmitri Orlov, Mirror symmetry for del Pezzo surfaces: vanishing cycles and coherent sheaves, Invent. Math. 166 (2006), no. 3, 537–582. MR 2257391, DOI 10.1007/s00222-006-0003-4
- Paul Balmer and Marco Schlichting, Idempotent completion of triangulated categories, J. Algebra 236 (2001), no. 2, 819–834. MR 1813503, DOI 10.1006/jabr.2000.8529
- Michael J. Bardzell, The alternating syzygy behavior of monomial algebras, J. Algebra 188 (1997), no. 1, 69–89. MR 1432347, DOI 10.1006/jabr.1996.6813
- Raf Bocklandt, Calabi-Yau algebras and weighted quiver polyhedra, Math. Z. 273 (2013), no. 1-2, 311–329. MR 3010162, DOI 10.1007/s00209-012-1006-z
- Raf Bocklandt, Consistency conditions for dimer models, Glasg. Math. J. 54 (2012), no. 2, 429–447. MR 2911380, DOI 10.1017/S0017089512000080
- Nathan Broomhead, Dimer models and Calabi-Yau algebras, Mem. Amer. Math. Soc. 215 (2012), no. 1011, viii+86. MR 2908565, DOI 10.1090/S0065-9266-2011-00617-9
- Ben Davison, Consistency conditions for brane tilings, J. Algebra 338 (2011), 1–23. MR 2805177, DOI 10.1016/j.jalgebra.2011.05.005
- Bo Feng, Yang-Hui He, Kristian D. Kennaway, and Cumrun Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008), no. 3, 489–545. MR 2399318, DOI 10.4310/ATMP.2008.v12.n3.a2
- Sebastián Franco, Amihay Hanany, David Vegh, Brian Wecht, and Kristian D. Kennaway, Brane dimers and quiver gauge theories, J. High Energy Phys. 1 (2006), 096, 48. MR 2201227, DOI 10.1088/1126-6708/2006/01/096
- V. Ginzburg, Calabi-Yau algebras, math/0612139.
- Amihay Hanany, Christopher P. Herzog, and David Vegh, Brane tilings and exceptional collections, J. High Energy Phys. 7 (2006), 001, 44. MR 2240899, DOI 10.1088/1126-6708/2006/07/001
- A. Hanany and K. D. Kennaway, Dimer models and toric diagrams, hep-th/0602041.
- Amihay Hanany and David Vegh, Quivers, tilings, branes and rhombi, J. High Energy Phys. 10 (2007), 029, 35. MR 2357949, DOI 10.1088/1126-6708/2007/10/029
- Allen Hatcher, On triangulations of surfaces, Topology Appl. 40 (1991), no. 2, 189–194. MR 1123262, DOI 10.1016/0166-8641(91)90050-V
- K. Hori, C. Vafa, Mirror symmetry, arXiv:hep-th/0002222.
- Daniel R. Gulotta, Properly ordered dimers, $R$-charges, and an efficient inverse algorithm, J. High Energy Phys. 10 (2008), 014, 31. MR 2453031, DOI 10.1088/1126-6708/2008/10/014
- Akira Ishii and Kazushi Ueda, On moduli spaces of quiver representations associated with dimer models, Higher dimensional algebraic varieties and vector bundles, RIMS Kôkyûroku Bessatsu, B9, Res. Inst. Math. Sci. (RIMS), Kyoto, 2008, pp. 127–141. MR 2509696
- A. Ishii, K. Ueda, Dimer models and exceptional collections, arXiv:0911.4529
- Akira Ishii and Kazushi Ueda, A note on consistency conditions on dimer models, Higher dimensional algebraic geometry, RIMS Kôkyûroku Bessatsu, B24, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011, pp. 143–164. MR 2809653
- T. V. Kadeishvili, The algebraic structure in the homology of an $A(\infty )$-algebra, Soobshch. Akad. Nauk Gruzin. SSR 108 (1982), no. 2, 249–252 (1983) (Russian, with English and Georgian summaries). MR 720689
- Ludmil Katzarkov, Birational geometry and homological mirror symmetry, Real and complex singularities, World Sci. Publ., Hackensack, NJ, 2007, pp. 176–206. MR 2336686, DOI 10.1142/9789812706898_{0}008
- Bernhard Keller, Introduction to $A$-infinity algebras and modules, Homology Homotopy Appl. 3 (2001), no. 1, 1–35. MR 1854636, DOI 10.4310/hha.2001.v3.n1.a1
- Kristian D. Kennaway, Brane tilings, Internat. J. Modern Phys. A 22 (2007), no. 18, 2977–3038. MR 2343711, DOI 10.1142/S0217751X07036877
- Richard Kenyon, An introduction to the dimer model, School and Conference on Probability Theory, ICTP Lect. Notes, XVII, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 267–304. MR 2198850
- Maxim Kontsevich, Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 120–139. MR 1403918
- Maxim Kontsevich and Yan Soibelman, Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I (Dijon), Math. Phys. Stud., vol. 21, Kluwer Acad. Publ., Dordrecht, 2000, pp. 255–307. MR 1805894
- M. Kontsevich and Y. Soibelman, Notes on $A_\infty$-algebras, $A_\infty$-categories and non-commutative geometry, Homological mirror symmetry, Lecture Notes in Phys., vol. 757, Springer, Berlin, 2009, pp. 153–219. MR 2596638
- S. Mozgovoy, Crepant resolutions and brane tilings I: Toric realization, arXiv:0908.3475
- M. Bender and S. Mozgovoy, Crepant resolutions and brane tilings II: Tilting bundles, arXiv:0909.2013
- Sergey Mozgovoy and Markus Reineke, On the noncommutative Donaldson-Thomas invariants arising from brane tilings, Adv. Math. 223 (2010), no. 5, 1521–1544. MR 2592501, DOI 10.1016/j.aim.2009.10.001
- D. O. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 240–262 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3(246) (2004), 227–248. MR 2101296
- D. O. Orlov, Triangulated categories of singularities, and equivalences between Landau-Ginzburg models, Mat. Sb. 197 (2006), no. 12, 117–132 (Russian, with Russian summary); English transl., Sb. Math. 197 (2006), no. 11-12, 1827–1840. MR 2437083, DOI 10.1070/SM2006v197n12ABEH003824
- Alexander Quintero Vélez, McKay correspondence for Landau-Ginzburg models, Commun. Number Theory Phys. 3 (2009), no. 1, 173–208. MR 2504756, DOI 10.4310/CNTP.2009.v3.n1.a4
- Paul Seidel, Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2441780, DOI 10.4171/063
- Michel van den Bergh, Non-commutative crepant resolutions, The legacy of Niels Henrik Abel, Springer, Berlin, 2004, pp. 749–770. MR 2077594
Additional Information
- Raf Bocklandt
- Affiliation: Korteweg de Vries institute, University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
- Email: raf.bocklandt@gmail.com
- Received by editor(s): December 20, 2011
- Received by editor(s) in revised form: February 4, 2013, and November 12, 2013
- Published electronically: April 3, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 429-469
- MSC (2010): Primary 16G20, 14J33
- DOI: https://doi.org/10.1090/tran/6375
- MathSciNet review: 3413869