A characterization of a new type of strong law of large numbers
HTML articles powered by AMS MathViewer
- by Deli Li, Yongcheng Qi and Andrew Rosalsky PDF
- Trans. Amer. Math. Soc. 368 (2016), 539-561 Request permission
Abstract:
Let $0 < p < 2$ and $1 \leq q < \infty$. Let $\{X_{n};~n \geq 1 \}$ be a sequence of independent copies of a real-valued random variable $X$ and set $S_{n} = X_{1} + \cdots + X_{n}, ~n \geq 1$. We say $X$ satisfies the $(p, q)$-type strong law of large numbers (and write $X \in SLLN(p, q)$) if $\sum _{n = 1}^{\infty } \frac {1}{n}\left (\frac {\left |S_{n}\right |}{n^{1/p}} \right )^{q} < \infty$ almost surely. This paper is devoted to a characterization of $X \in SLLN(p, q)$. By applying results obtained from the new versions of the classical LĂ©vy, Ottaviani, and Hoffmann-JĂžrgensen (1974) inequalities proved by Li and Rosalsky (2013) and by using techniques developed by Hechner (2009) and Hechner and Heinkel (2010), we obtain sets of necessary and sufficient conditions for $X \in SLLN(p, q)$ for the six cases: $1 \leq q < p < 2$, $1 < p = q < 2$, $1 < p < 2$ and $q > p$, $q = p = 1$, $p = 1 < q$, and $0 < p < 1 \leq q$. The necessary and sufficient conditions for $X \in SLLN(p, 1)$ have been discovered by Li, Qi, and Rosalsky (2011). Versions of the above results in a Banach space setting are also given. Illustrative examples are presented.References
- T. A. Azlarov and N. A. Volodin, The laws of large numbers for identically distributed Banach space-valued random variables, Teor. Veroyatnost. i Primenen. 26 (1981), no. 3, 584â590 (Russian, with English summary). MR 627864
- Yuan Shih Chow and Henry Teicher, Probability theory, 3rd ed., Springer Texts in Statistics, Springer-Verlag, New York, 1997. Independence, interchangeability, martingales. MR 1476912, DOI 10.1007/978-1-4612-1950-7
- Alejandro de Acosta, Inequalities for $B$-valued random vectors with applications to the strong law of large numbers, Ann. Probab. 9 (1981), no. 1, 157â161. MR 606806
- Florian Hechner, Lois fortes des grands nombres et martingales asymptotiques, Institut de Recherche Mathématique Avancée, Université de Strasbourg, Strasbourg, 2009 (French, with French summary). ThÚse, Université Louis Pasteur, Strasbourg, 2009. MR 2796518
- Florian Hechner and Bernard Heinkel, The Marcinkiewicz-Zygmund LLN in Banach spaces: a generalized martingale approach, J. Theoret. Probab. 23 (2010), no. 2, 509â522. MR 2644873, DOI 10.1007/s10959-009-0212-z
- JĂžrgen Hoffmann-JĂžrgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159â186. MR 356155, DOI 10.4064/sm-52-2-159-186
- J. Hoffmann-JĂžrgensen and G. Pisier, The law of large numbers and the central limit theorem in Banach spaces, Ann. Probability 4 (1976), no. 4, 587â599. MR 423451, DOI 10.1214/aop/1176996029
- A. Kolmogoroff, Sur la loi forte des grands nombres, C. R. Acad. Sci. Paris SĂ©r. Math. 191 (1930), 910-912.
- Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991. Isoperimetry and processes. MR 1102015, DOI 10.1007/978-3-642-20212-4
- Deli Li, Yongcheng Qi, and Andrew Rosalsky, A refinement of the Kolmogorov-Marcinkiewicz-Zygmund strong law of large numbers, J. Theoret. Probab. 24 (2011), no. 4, 1130â1156. MR 2851248, DOI 10.1007/s10959-010-0308-5
- D. Li, Y. Qi, and A. Rosalsky, An extension of theorems of Hechner and Heinkel. Asymptotic Laws and Methods in Stochastics: A Volume in Honour of MiklĂłs CsörgĆ, Fields Institute Communications Series, Springer-Verlag, New York (2015). To appear.
- Deli Li and Andrew Rosalsky, New versions of some classical stochastic inequalities, Stoch. Anal. Appl. 31 (2013), no. 1, 62â79. MR 3007884, DOI 10.1080/07362994.2013.741381
- J. Marcinkiewicz and A. Zygmund, Sur les fonctions indépendantes, Fund. Math. 29 (1937), 60-90.
- M. B. Marcus and G. Pisier, Characterizations of almost surely continuous $p$-stable random Fourier series and strongly stationary processes, Acta Math. 152 (1984), no. 3-4, 245â301. MR 741056, DOI 10.1007/BF02392199
- Bernard Maurey and Gilles Pisier, SĂ©ries de variables alĂ©atoires vectorielles indĂ©pendantes et propriĂ©tĂ©s gĂ©omĂ©triques des espaces de Banach, Studia Math. 58 (1976), no. 1, 45â90 (French). MR 443015, DOI 10.4064/sm-58-1-45-90
- Edith Mourier, ElĂ©ments alĂ©atoires dans un espace de Banach, Ann. Inst. H. PoincarĂ© 13 (1953), 161â244 (French). MR 64339
- Gilles Pisier, Probabilistic methods in the geometry of Banach spaces, Probability and analysis (Varenna, 1985) Lecture Notes in Math., vol. 1206, Springer, Berlin, 1986, pp. 167â241. MR 864714, DOI 10.1007/BFb0076302
Additional Information
- Deli Li
- Affiliation: Department of Mathematical Sciences, Lakehead University, Thunder Bay, Ontario, Canada P7B 5E1
- Email: dli@lakeheadu.ca
- Yongcheng Qi
- Affiliation: Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, Minnesota 55812
- Email: yqi@d.umn.edu
- Andrew Rosalsky
- Affiliation: Department of Statistics, University of Florida, Gainesville, Florida 32611
- Email: rosalsky@stat.ufl.edu
- Received by editor(s): June 10, 2013
- Received by editor(s) in revised form: November 21, 2013
- Published electronically: May 27, 2015
- Additional Notes: The research of the first author was partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada
The research of the second author was partially supported by NSF Grant DMS-1005345 - © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 539-561
- MSC (2010): Primary 60F15; Secondary 60B12, 60G50
- DOI: https://doi.org/10.1090/tran/6390
- MathSciNet review: 3413873