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WEAKLY PROPER GROUP ACTIONS, MANSFIELD’S
IMPRIMITIVITY AND TWISTED LANDSTAD DUALITY

ALCIDES BUSS AND SIEGFRIED ECHTERHOFF

ABSTRACT. Using the theory of weakly proper actions of locally compact
groups recently developed by the authors, we give a unified proof of both re-
duced and maximal versions of Mansfield’s Imprimitivity Theorem and obtain
a general version of Landstad’s Duality Theorem for twisted group coactions.
As one application, we obtain the stabilization trick for arbitrary twisted coac-
tions, showing that every twisted coaction is Morita equivalent to an inflated
coaction.

1. INTRODUCTION

The main goal of this paper is to show that the theory of weakly proper actions
of locally compact groups developed by the authors in [IL[2] can be used to give
unified proofs and/or generalizations of some of the central results about (twisted)
coactions of groups. More specifically, we want to explore Mansfield’s Imprimitivity
Theorem (and its generalizations) as well as Landstad Duality for twisted coactions
of groups from the point of view of the theory of weakly proper actions and their
generalized fixed-point algebras.

In [22] Mansfield proved his main result, today called Mansfield’s Imprimitivity
Theorem, which says that for a (reduced) coaction §: B — M(B & C}(G)) of
a locally compact group G on a C*—algebE\B and an amenable normal closed
subgroup N C G, the crossed product B x5 G/N by the restricted coaction 6[: B —

M(B®C;(G/N)) of G/N is Morita equivalent to B x5G x=N, the crossed product

by the dual N-action 5. The bimodule implementing this equivalence is obtained
as a certain completion of a special dense *-subalgebra D C B X CA¥, often called
the Mansfield subalgebra. Over time, several authors — see [12L[17[18] — generalized
Mansfield’s theorem in different directions by allowing non-amenable and even non-
normal closed subgroups of G in combination with different classes of coactions
including full normal or maximal coactions of G (the word “full” means that we
consider coactions of the full group C*-algebra C*(G)). We should emphasize that
the theory of “full normal” coactions is equivalent to the theory of coactions by the
reduced group algebra C*(G) (see [25]).

The version of Mansfield’s theorem for normal coactions can be obtained from
the theory of Rieffel proper actions ([27,28]) by proving that the dual action of N
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on B x; G is proper (in Rieffel’s sense) with respect to Mansfield’s subalgebra D C
B x5 G. Indeed, this fact has been first observed in Mansfield’s original paper (see
[22, §7]) and it has been used to obtain generalizations of Mansfield’s Imprimitivity
Theorem to non-normal and/or non-amenable subgroups in [I2,[14,[17]. On the
other hand, the maximal version of Mansfield’s theorem (obtained in [18]) is proved
in an indirect way by analysing relations between several imprimitivity bimodules
(such as Green’s imprimitivity bimodule and Katayama’s bimodule).

One of our goals in this paper is to show that both the maximal and normal
versions of Mansfield’s Imprimitivity Theorem can be obtained by considering full
or reduced generalized fixed-point algebras for appropriate weakly proper actions.
While the reduced generalized fixed-point algebras have been introduced by Rieffel
in the 1980’s ([27]), the theory of full fixed-point algebras has been introduced only
recently in the quite general situation of weakly proper G-algebras by the authors
in [I]. Recall that a G-action « on a C*-algebra A is called weakly proper if
there is a proper G-space X and a G-equivariant non-degenerate *-homomorphism
Co(X) = M(A). We then call A a weakly proper X x G-algebra (or just a weak
X xG-algebra). For such algebras we constructed in [I] a Hilbert module F,(A) over
the p-crossed product Ax, G for any given crossed-product norm |||, on C.(G, A)
which lies between the reduced crossed-product norm ||-||,- and the maximal crossed-
product norm || - [[,. The algebra of compact operators AS = K(F,(A)) is a
completion of the generalized fized-point algebra with compact supports:

(1.1)  AS =C.(G\X)-{m e M(A)Y :m-C(X),Cc(X)-m C A} - C.(G\X),

where A, = C.(X) - A-C.(X) and M(A) denotes the algebra of G-fixed points
in the multiplier algebra M(A). If the action of G on X is free and proper, F,,(A)
implements a Morita equivalence Afj ~ AN, G

Given a G-coaction (B, d), the crossed product B X G may be viewed as a weak
G x G-algebra in a canonical way by taking the dual G-action 5 and the canonical
homomorphism jg: Co(G) — M(B x5 G), where X = G is endowed with the right
translation action of G. In particular, if H is a closed subgroup of G, we may restrict
the G-action to H and view B x5 G as a weak G x H -algebra. Therefore, by the
general theory of weakly proper actions explained above, we get a Hilbert bimodule
FH(B x5 () implementing a Morita equivalence (B X @)f ~ B x5 G <5 H for
any crossed-product norm || - ||, on C.(H, B x5 G). The only remaining point to
get Mansfield’s theorem is to suitably identify the fixed-point algebra (B X @)f

with a sort of “crossed product” B x4, CT/-T{ by the homogeneous space G/H
whenever this is defined. In fact, we prove that if N is a normal closed subgroup
of G and y = w or u = r denotes either the maximal or reduced crossed-product
norm (for both groups G and N), then (B X @)ﬁ’ is indeed isomorphic to the
crossed product B, X5, CT/]\V by the restricted coaction, where (B,,,d,) denotes
either the maximalization (for p = u) or the normalization (for p = r) of (B,?).
For non-normal subgroups H C G, it follows almost by definition that (B x @)f
identifies with the crossed product B, Xg,, C?/-T{ as defined in [6]. This has been
observed before in [12, Theorem 3.1] and [I3], Proposition 5.2]. Our results indicate
that it would be useful to define the full crossed product B x5, (?/?I of B by the
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restriction of a G-coaction ¢ to the homogeneous space G/H as the maximal fixed-
point algebra (B X, @)UH Our Morita equivalence (B x5 @)UH ~ (B x5 @) X5 H
then automatically provides a full version of Mansfield’s Imprimitivity Theorem for
crossed products by G/H.

We should stress that our results are completely independent from Mansfield’s

original idea of constructing certain dense subalgebras Dy and D of B X, CT/?I
and B X @, respectively. Nevertheless, we show that our results are compatible
with Mansfield’s constructions by showing that the algebra Dy of Mansfield lies
inductive limit dense in the fixed-point algebra (B X4 @)f , and hence also dense in
any fixed-point algebra (B X4 @)f . In particular, this implies that one also obtains

the full fixed-point algebra (B X @)HH as a certain completion of Dy.

Mansfield’s theorem motivated Phillips and Raeburn to introduce twisted coac-
tions of groups in [23]. If N C G is a closed normal subgroup of G, a twist over G/N
for a (full) coaction (B, ¢) of G is a unitary corepresentation w € M(B® C*(G/N))
of G/N such that the restriction 6| of 6 to G/N is implemented by conjugation with
w and such that § coacts trivially on the first leg of w. For each such twisted coac-
tion, one can form the twisted crossed product B X, G which is the quotient of the

untwisted crossed product B 3G by a certain (twisting) ideal. Another main result
of this paper will be a Landstad Duality Theorem for twisted coactions of groups
which will, in particular, provide us with the notion of mazimalizations of twisted
coactions: we prove that for a weak G x N-algebra A, there is a twisted coaction
(55, wﬁ[) on Afy — for suitable crossed-product norms p on C.(N, A) — and a natural

isomorphism Aﬁ’ X6, w, G = A of weak G x N -algebras. Conversely, if we start with

o
any given twisted coaction (4, w), the twisted crossed product A := B X, G carries
a canonical structure as a weak G x N-algebra, and for suitable crossed-product

norms || - ||, on Co(N, B x5, @) we obtain a twisted (G, G/N)-coaction (61 ,w/Y)

on BYY := (B %5 é)ﬁ/ such that 7Y (B x5, () implements a Morita equivalence
between BIJLV and B Xs,, G X3 N which provides a version of Katayama duality
for such twisted cosystems. We then show:

(1) Given an arbitrary twisted coaction (B,d,w) there exists a unique norm

|11, on Ce(N, B x5, G) such that (B, 6,w) = (BY,6 ,w,). In particular,
(B, ¢,w) satisfies the above version of Katayama duality for ||-||,,. Moreover,

we show that (B, d,w) is Morita equivalent to the trivially twisted inflated

bidual coaction (Inf SM, 1) on B X5, G x5, N. This gives the stabilization
trick for arbitrary twisted coactions extending the main result of [9] where
the stabilization trick was shown for amenable N.

(2) There are canonical epimorphisms BY — B — BY which are equivariant
for the twisted coactions (5, wX), (6, w), and (52, wX), respectively, such
that the resulting homomorphisms

Biv ng’wué—»BN(;’wé—»Biv ><1571y é

7w7‘
are isomorphisms of weakly proper G x N-algebras.

By the previous discussion we already know that the twisted cosystem
(BN, 6N w,) satisfies full Katayama duality BY ~p (BY XsN o, G) ¥y N and

u yYu
the twisted cosystem (BY, 6N w,) satisfies reduced Katayama duality BY ~js

ryYr
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(BN XN o, @) X, N. They therefore give twisted analogues of a maximalization
and a normalization of the coaction (0,w), thus extending similar concepts for
ordinary coactions as introduced in [7] and [25] and we obtain complete twisted
analogues of the results on exotic coactions obtained in [IJ.

The outline of the paper is as follows: after a short preliminary section (§2]) we
prove in §3lsome useful general results on fixed-point algebras including a theorem
on iterated fixed-point algebras for normal subgroups: if A is a weakly proper
X x G-algebra and N is a closed normal subgroup of G, then A = (A{j)ﬁ”" and
similarly for the reduced fixed-point algebra. This result will give the main tool for
proving our versions of Mansfield’s theorem in 4l The results on twisted Landstad
Duality and maximalizations and normalizations for twisted coactions are given in
the final section, §ol As one application, we give a new proof of the decomposition

theorem B x5 G = (B %y CT/T\/') X5 5 @G of Phillips and Racburn in [23].

2. PRELIMINARIES

To fix notation and for the reader’s convenience we recall in this section some
basic definitions and constructions from [1l[2] about weakly proper actions and their
generalized fixed-point algebras as well as some notation on coactions that will be
needed in this paper.

Let G be a locally compact group and let A be a G-algebra, that is, a C*-al-
gebra endowed with a (strongly continuous) G-action a: G — Aut(A). We endow
C.(G, A) with the usual *-algebra structure by

foglt) = /G fS)oalgls i) ds,  F7(8) == A (£,

where A denotes the modular function of G. The full and reduced crossed product,
denoted A x, G and A X, G, respectively, are also defined in the usual way as
completions of C.(G, A) with respect to the universal and reduced C*-norms || - ||,
and || - ||, respectively — the latter is defined in terms of the regular representation
A: C.(G,A) — L(L*(G, A)). More generally, we call a crossed-product norm any
C*-norm || - ||, between the full and reduced norm and write A %, , G for the
corresponding C*-algebra completion, sometimes called an ezotic crossed product.
Certain special exotic crossed products of this type have been constructed in [15]:
they are associated to crossed-product norms coming from G-invariant ideals in the
Fourier-Stieltjes algebra B(G) of G.

Now let X be a locally compact Hausdorff G-space with left G-action GXx X — X,
(t,x) — t-x. We usually denote by 7: G — Aut(Cy(X)) the corresponding action
given by (7(f))(z) = f(t™ - z). An important special situation will be the case
where X = G is endowed with (right) translation G-action ¢ - g := gt—1.

By a weak X x G-algebra we mean a C*-algebra A endowed with a G-action
a and a G-equivariant non-degenerate *-homomorphism ¢: Co(X) — M(A). We
often write f - a:= ¢(f)a and a - f := ag(f) for f € Co(X), a € A. We are mainly
interested in the situation where X is a proper G-space, in which case we say that
A is a weakly proper X x G-algebra (notice that these actions are also proper in
Rieffel’s sense [27] by [28, Theorem 5.7]). Recall that the G-action on X is proper
if and only if for all compact subsets K,L C X, the set {t € G :t- KNL # 0} is
compact in G. In this situation, the space F.(A) := C.(X)- A can be endowed with
a canonical structure of a pre-Hilbert module over C.(G,A) C A X, , G (for any
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crossed-product norm || - ||,,) with inner product and right C.(G, A)-action given by

(e, mle =AM an), €xf= /GA(t)_Wat(f fTh)dt

for all £,n € Fe(A), f € C.(G,A) and t € G. The Hilbert A x,,, G-module
completion of F.(A) is denoted by F,(A) (sometimes also FS (A) if it is important
to keep track of the group G). The C*-algebra of compact operators on F,,(A)
can be canonically identified with a completion Afj of the generalized fixed-point
algebra with compact supports AS (see (ILT))) via the (left) AS-valued inner product
and left action on F.(A) given by

st
ac(&ln) ==E(n*) = / ar(En*)dt, a- & := a& (multiplication in M(A)),
el

where E(a) := ét ay(a) dt denotes the strict (unconditional) integral ([I0]) when-
ever this makes sense (which is the case for elements a = &n* € A, = C.(X) -
A-C.(X)). We shall write E“ if it is important to keep track of the group in the
notation. Note that in this construction F.(A) becomes a (partial) AS-C.(G, A)-
pre-imprimitivity bimodule in which all possible pairings are jointly continuous with
respect to the respective inductive limit topologies (see [I, Definition 2.11] for the
definition of these topologies). This is shown in [I, Lemma 2.12] and the proof of
that lemma also shows that the E : A, — A is inductive limit continuous as well.

If the above construction is applied to the special case where A = Cy(X), we
obtain a Co(X) x, G-Hilbert module F(X) := F(Cy(X)) with algebra of compact
operators isomorphic to Co(G\X). Recall that Cy(X) %, G = Co(X) X, G, that
is, there is only one crossed-product norm g =« = r on C.(G, Cy(X)) because the
action is proper. This is definitely not the case in general: every exotic crossed
product appears as an (exotic) u-generalized fixed point algebra A/Cj (see [2, Corol-
lary 3.25]). The relation between F(X) and F,(A) is given by the (balanced) tensor
product decomposition (obtained in [I, Proposition 2.9]):

]:H(A) = ]:(X) <X)C'()(X)XI,.G (A N G)

In particular, if the action on X is free, this decomposition implies that F,(A) is full
as a right Hilbert A x,, , G-module and hence may be viewed as an imprimitivity bi-
module between AS and Ax, ,G. One special class of weakly proper actions where
the above theory of generalized fixed point algebras can be successfully applied
comes from crossed products by group coactions. Recall that a (full) coaction of G
on a C*-algebra B is a non-degenerate *-homomorphism ¢: B - M(B ® C*(G))
satisfying (6 ® id) o 6 = (id ®d¢) o § and such that §(B)(1 ® C*(G)) = B ® C*(Q)
(“non-degeneracy” of the coaction), where dg: C*(G) — M(C*(G) @ C*(G)),
da(ug) = ug @ ug for all t € G, denotes the comultiplication of C*(G) and G 5 t —
uy € M(C*(G)) denotes the universal representation. Although we have mentioned
reduced coactions in the introduction, meaning (injective) coactions modelled on
C(G) in place of C*(G), we only work with full coactions in the main body of this
paper.

Given a coaction (B,d), one can assign the crossed product B X G which is
endowed with a universal covariant representation pair jp: B — M(B X; @) and
ja: Co(G) — M(B x5 G) in such a way that elements of the form jz(b)jc(f)
linearly span a dense subspace of B X G. By a covariant representation we mean
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a pair of (non-degenerate) *-homomorphisms 7,0: B, Co(G) — M(D), for some
C*-algebra D, satisfying

(r®id)(8(b)) = (0 ®id)(we)(m(a) ® 1)(0 ®id)(wg)* forall b€ B,

where wg € M(Cy(G) ® C*(G)) is the unitary represented by the function ¢ — u;.
The universality of (jp, jo) means that any such pair (, o) gives rise to a (unique)
non-degenerate *-homomorphism 7 x o: B x5 G — M(D) with (7 x o) o jp =7
and (m x o) o jo = o. The theory of crossed products by coactions turns out
to be “amenable”, in the sense that the regular representation of B X G into
M(B ® K(L*G)) given by the covariant pair (m,0) = ((id®\) 0,1 ® M), where A
denotes the left regular representation of G and M the representation of Cy(G) by
multiplication operators, is faithful for every coaction. In other words, B x5 G may
be identified with the image of the regular representation in M(B ® K(L?G)). On
the other hand, the representation jp need not be faithful in general (as happens
for some dual coactions on full crossed products by actions of non-amenable G). A
coaction is said to be normal if jp is injective.

The crossed product B x; G carries a dual action 6 of G given on generators by
the formula: R

5.5 (0)ic(f) = jpB)ic(n (),

where 7 denotes the right translation action of G on itself: 7,(f)|s = f(st). This
action turns jg into a G-equivariant homomorphism and therefore enriches A =
B x5 G with the structure of a weakly proper G x G-algebra. The double (full)
crossed product B X G M:S\G is, in general, not isomorphic to B ® K(L*G), but
there is a canonical surjection

©: B x5 G %3G — B®K(L*G)

which is defined as the integrated form ® := (7 x o) x (1 ® p), where (7,0) =
((id®X) 00,1 ® M) is the regular covariant representation of (B,d) and p denotes
the right regular representation of G on L?G. The coaction (B, d) is called mazimal
if ® is an isomorphism. Maximal coactions are exactly those which are Morita
equivalent to dual coactions on full crossed products by actions. In general, there is
a (unique, up to isomorphism) mazimalization (By, d,) of (B, d) which is a maximal
coaction together with an equivariant surjection B, — B inducing an isomorphism
By, %, G Bx;G (of weak G x G-algebras). Similarly, there is a normalization
(B, d;) of (B, 6), that is, a normal coaction with an equivariant surjection B — B,
inducing an isomorphism B x5 G = B, X5, G (of weak G x G-algebras) in such a
way that the canonical surjection ® factors through an isomorphism
®,: BxsG x5 G = B @ K(L*G).

More generally, ® determines a crossed-product norm || - ||, on C.(G, A) for A =
B x5 G in such a way that & factors through an isomorphism

d,: BxsG x5, G- BoK(L*G).

It follows from [I, Theorem 4.6] that there is a coaction 55 on the p-generalized

fixed-point algebra AS and Corollary 4.7 in [1] says that (B, d) = (A$,65). In this
situation we say that (B, d) is a u-coaction, or that it satisfies p-duality (which is
implemented by ®,). In particular, a coaction is maximal (resp. normal) if and

only if (B,§) = (A%, 5%) (resp. (B,d) = (A%, 6%)).

u’ru r oy VYp
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Summarizing, we may recover every coaction of G as a coaction of the form
(AS,(FE) for some weak G x G-algebra A. Moreover, for crossed-product norms
associated to ideals in B(G) as in [15], the assignment A — (AS,0) is an equiv-
alence between the categories of weak G x G-algebras and G-coactions satisfying
p~duality (see [1l, Theorem 7.2]).

In this paper we extend these results and describe the category of weak G x N-
algebras, for N a closed normal subgroup of G, in terms of coactions of G twisted
over G/N. This will be done in §5 where we review the definition of twisted

coactions and derive the relevant results.

3. GREEN TWISTED ACTIONS AND ITERATED FIXED-POINT ALGEBRAS

Let G be a locally compact group and N C G a normal closed subgroup. In most
of this section ||-||,, will denote either the maximal or reduced crossed-product norm.

Let (B, 8) be a G-algebra. Recall that a (Green) twist for 3 is a strictly contin-
uous group homomorphism v: N — UM (A) satisfying

ap(a) =vpav,-1 and  og(vy) = vgy—1 VEE G,n € N.

In this case we also say that (8,v) is a (Green) twisted action of (G,N) on a
C*-algebra B, or that (B, ,v) is a (G, N)-algebra. If v is the trivial twist, that is,
v, = 1 for all n, then g is trivial on NV and hence factors through a G /N-action ﬁ
Conversely, If (B, () is a G/N-algebra, then we may inflate 3 to a G-action Inf 3
on B and this is a (G, N)-twisted action with respect to the trivial twist. Hence, we
may view (G, N)-algebras as generalizations of G/N-algebras. The maximal twisted
crossed product B X g, (G, N) can be constructed as the universal completion of the
convolution algebra C.(G, B, v) consisting of all continuous functions f : G — B
with compact supports modulo N which satisfy the relation f(ns) = f(s)v,-1 for
all s € G,n € N. Convolution and involution on C.(G, B, v) are defined by

Fral)= [ SO8MS) dotN and f1(5) = Aals A6

We always choose Haar measures on G, N, and G/N in such a way that the formula

(3.) Letwaon=[ (/] ton) axn) damn

holds for all ¢ € C.(G). The non-degenerate *-representations of B xg, G are in
one-to-one correspondence with the covariant representations (m, U) of (B, 8) which
preserve the twist v in the sense that 7(v,,) = U, for all n € N. Any such covariant
representation integrates to a *-representation m x U of C.(G, B,v) by putting

AU = [ ()0 de o

The universal norm || - ||, on C.(G, B,v) is then given as
[fllu = sup [lm > U(f)]
(m, U

where (7,U) runs through all twisted covariant representations of (B, 3,v). Alter-
natively, B g, (G, N) can be obtained as the quotient of the untwisted crossed
product by the ideal

I, = ﬂ{kerﬂ x U : (m,U) is a twisted covariant representation of (B, §,v)}.
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Note that we have a canonical isomorphism C.(G,B,1y) = C.(G/N,B) which
induces an isomorphism B x5, (G, N) = B x;G/N, if 3 is an action of G/N
on B. Twisted actions of this kind have been introduced by Phil Green in [I1] and
we refer to his paper for more details.

If (A, a,v) and (B, 3,v7) are two twisted (G, N)-algebras, then a (G, N)-equi-
variant A-B-correspondence (&, ) is a G-correspondence (€, ) between (A, o) and
(B, B) which preserves the twists in the sense that

m(€) =02 €00 veeEneN.

If, in addition, £ is an imprimitivity A—B-bimodule, we say that the twisted actions
(A, a,v*) and (B, S,v?) are Morita equivalent. By the version of the Packer-
Raeburn stabilization trick given in [5], we know that every (G, N)-twisted action
is Morita equivalent to a twisted (G, N)-action with trivial twist, i.e., to a G/N-
action.

Given a twisted (G, N)-action (B, ,v) and a Hilbert B, G-module (&£,7), the
crossed-product module (or descent) € X, (G, N) is the Hilbert B xg, (G,N)-
module defined as the completion of the space C.(G, &, v) of all continuous functions
x: G — & with compact support mod N satisfying x(ns) = z(s)v,-1 for all s € G
and n € N, endowed with the structure of a pre-Hilbert module over C.(G, B, v)
given by:

e fl= / £(5)7(F(571)) dew (L),
G/N

{zly)le == /G/Nﬂs—l(<x(3)Iy(t8)>)dG/N(tN)~

Given a G-algebra (A, ), the crossed product A x, N (where a| denotes the
restriction of a to N) carries a twisted (G, N)-action (&,tn) given by & (f)|n =

S(t)ay(f(t~'nt)), where 6(t) = % for all ¢ € G, and ¢y is the canonical

homomorphism N — M(A x N), tx(n)(f)]s = an(f(n~1s)). Sometimes (&,ty) is
called the decomposition twisted action of (G, N) on A x4 N. There is a canonical
isomorphism A x, N %, (G,N) = A x, G for p=wu or p =1 (see [II], Proposition
1] and [21] Proposition 5.2]). Note that (&,ty) factors through a twisted action
(which we also denote (&,¢y)) on a given exotic crossed product A x|, N if and
only if the ideal

IM = ker(A Xl N— A Xal,p N)

is a-invariant. However, it is not clear how crossed-product norms for actions of
N, G, and G/N should be related to each other in general to obtain the description
of the G-crossed products as iterated crossed products.

We shall need twisted actions for the proof that for any weakly proper X x G-
algebra (A, a, ¢) we have canonical isomorphisms

(AN)G/N = 4G and similarly  (AN)S/N = AG,

where || - ||, and || - || denote, as usual, the universal or reduced norms on crossed
products by G, N, and G/N, respectively. Note that in the case where G = N x H is
a direct product of groups, this result has been shown in [2, Lemma 5.17]. Observe



MANSFIELD’S IMPRIMITIVITY AND TWISTED LANDSTAD DUALITY 257

that by restricting the action a to N provides us with the weakly proper X x N-
algebra (A, a|, ). We then denote by
st

EN A, — AY; EN(a) = /N as(a)dy(s)

the corresponding surjective “conditional expectation”.

Proposition 3.2. Suppose that (A, a, ¢) is a weakly proper X x G-algebra and let
| - 1|, be any crossed-product norm on C.(N, A) such that the corresponding ideal
I, € A xg N is invariant under the decomposition action &. Then the formula

(&) = 6(t)" 2 (€)

for & € FN(A) eatends to a G-action v~ : G — Aut(F}Y (A)) which is compatible
with the decomposition G-action & of G on A x|, N. The corresponding G-
action o™ := AdyN on Al = K(FY (A)) is given on the dense subalgebra AY by
the restriction of a to AY C M(A) and satisfies the equation

(3.3) A (EN(a)) = ay(EN(a)) = 6()EN (o (a)) Va € At €G.

This action is trivial on N (hence is inflated from an action of G/N) and
(FY(A),7) is a correspondence between the twisted actions (AY,a™,1y) and
(A g Nya,un). If N acts freely on X, this correspondence will be a (G,N)-
equivariant Morita equivalence.

Proof. We know that ]-',iv (A) = FY¥ @y (X)x, N Ax, N as Hilbert A x,, N-modules,
via the map that sends f ® g € C.(X) ® C.(N, A) to

fxg= /NAN(s)*l/ms(f cg(s7h))dn(s) € Co(X) - A= F.(A).

It was observed in [3, Remark 5.8] that F¥ = FN(Cy(X)) carries a G-action
#N . given by 7N (f) = §(t)/?7(f) for all f € C.(X), which is compatible with
the twisted decomposition (G, N)-action on Cy(X) x N and the G/N-action on
Xy = N\X. Hence, there is a G-action on F¥ ®cy(X)x, N A X, N given on
Co(X)®C:(N, A) by the formula v} (f©g) = 7(f) ®dy(g). Using the isomorphism
.FPJLV(A) ~ F¥ ®cy(X)x, N A Xy N we may view N as an action on ]-'lﬂv(A) and
a straightforward computation shows that v;(&) = §(t)1/2a;(€) for all £ € FN(A).
The corresponding action oy := Ady" on AIILV = IC(]-"liv (A)) is given, for all £, €
FN(A), by:

ap (EN(&n")) =ay (€1 m) = SOEN (ae(€n)) = an (BN (61%)),

where the last equation follows from a straightforward computation using the fact
that [ @(tnt™!) dn = §(t) [ ¢(n) dn for every integrable function ¢ on N. This
proves ([B3). Since the elements in AY are fixed by a,, for all n € N, it follows that
a® is trivial on N.

It is straightforward to check that v (&) x g = & * (tx(n™1) - g) for all n € N,
¢ € FN(A) and g € C.(N, A) and hence 7Y (¢) = ¢ - tx(n™1), which implies the
compatibility of 4 with the twists. The last assertion follows from the fact that
f,iv (A) is an Aﬁ[ —A x,, N imprimitivity bimodule if IV acts freely on X. (]
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If (A, «, ¢) is a weakly proper X x G-algebra as in the proposition and if N is a
closed normal subgroup of G, then G/N acts properly on N\ X in a canonical way
and we observe that the homomorphism

(3.4) o™ Co(N\X) = M(AN) = Laun(FY (A))

induced by ¢ corresponds to the canonical left Co(N\X)-action on FJY(A) =
FN(X) @cy(x)un A >y N given by

(3.5) N (fym = ¢(f)m VYm € A

(where ¢ has been tacitly extended to Cp,(X) and we view Cy(N\X) as a subalgebra
of Cp(X) in the usual way). From this it is easy to see that ¢V is G/ N-equivariant
and hence (Aﬁ[ ,aV) is a weakly proper N\ X x G/N-algebra. Thus we may study
the iterated fixed-point algebra (Alﬂv ),Cj/ N, if pu stands either for the universal or for
the reduced crossed-product norms. For the corresponding conditional expectation
EG/N . (AT — (Ag)f/N, we get the following:

Lemma 3.6. Let (A,a,¢) and N C G be as above. Then EN(A,) is induc-
tive limit dense in (Al)). and hence EG/N(EN(A,)) is inductive limit dense in

(Aﬁ’)f/N. Moreover, we have
EC/N(EN(a)) = E%(a) Va € A..

Hence AG = EY9(A.) = EG/N(EN(A,)) is inductive limit dense in (Aﬁ/)f/N.

Proof. The first assertion follows from the fact that EY and ES/N are continuous
with respect to the inductive limit topologies and that AY = EN(A,) is inductive

limit dense in (Afy )e- The second assertion follows from (B.I). O

In what follows we abuse slightly the notation and write C.(G, FN (A),ty) for
the space of all functions g € C.(G, F, (A), ty) such that there exists an f € Ce(X)
with g(s) = f-g(s) € FN(A) for all s € G. We leave it as an exercise for the reader
to check that C.(G, FN(A),tn) is inductive limit dense (with respect to compact
supports mod N) in Co(G, FY (A), tn).

Proposition 3.7. Let (A, «a,¢) be a weakly proper X x G-algebra and consider
the corresponding weakly proper N\X x G /N -algebra (ALV, aN ¢N) as in Proposi-
tion B.2], where p stands either for the maximal or for the reduced crossed-product
norms. Then there is a canonical isomorphism

FNAT) ©aywan (FY(A) % (G, N)) = FE(A)

as Hilbert A x,, N x, (G,N) = A %, G-modules via the map sending a @ g €
Aév © CC(Gv}—cN(A)a LN) toaxg:= fg/N AG(S)il/zas(a ! g(sil)) dG/N(SN)'

Proof. Let us first observe that AY = C.(N\X) - AY is indeed a dense sub-
space of ]-'E/N(Ag), and that the function s +— h(s) := Ag(s)"2as(a - g(s™'))
is constant on N-orbits (and has compact support mod N) so that the integral
over G/N defining a * g makes sense and gives an element of A. In fact, since
g e Cc(Gv}—(fV(A)’LN)ﬂ we have g(n_ls_l) = g(s_l) : LN(n) = AG(n)1/2an—1(g(8))
and since a is N-invariant, this implies

h(sn) = Ag(sn) " Pag(a-g(n™'s™h) = Aa(s) " ?as(a- g(s™1)) = h(s)
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for all s € G and n € N. Now observe that a * g € Fi(A) = C.(X)- A In
fact, take K C G compact such that supp(h) € KN and let ¢ € C.(G) with
[y e(sn)dy(n) =1 for all s € K. Then

/G ) (o) = /G N /N h(sm)o(sn) du (n) dgyw (sN) = /G h(s)p(s) ds.

Now, take f € C.(X) with g(s) = f - g(s) for all s € G. Since a € AY, we have

a-feA.=0Cc(X) - A-C.(X), so there is ¢ € C.(X) with a - f = 1) - b for some
b e A. But then

axg= / 0(5)Ac(5) 27, (9) - ara(b - g(s7Y)) ds
G

which is easily seen to be an element of F.(A) (compare this to the formula (2.10)
in [1]). We therefore have a well-defined linear map from the dense subspace AY ©
C.(G,FN(A),1n) of fE/N(Ag)®AﬁxG/N~F,iV(A) x (G, N) into the dense subspace
Fe(A) of F(A). Now, a computation as in the proof of [I, Proposition 2.9] shows
that this map preserves inner products and has dense range and hence extends to

an isomorphism ]-',?/N(A/Jf) QAN xG/N FN(A) % (G,N) = FS(A). O

Using the above proposition, we are now able to show the desired isomorphism
(Aﬁ’),cj/N =~ Afj for 4 = w and p = r. For reduced norms and free proper actions,
this result has been obtained in [I4] Theorem 4.5]. Our method of proof is, however,
quite different from [I4] and works for reduced and universal norms as well as for
non-free proper actions.

Theorem 3.8. For a weakly proper X x G-algebra A, there is an isomorphism
(ALV)S/N = AG extending the inclusion map AS = EG/N(AN) C (Aﬁ’)g/N into
AS C AS (where || -||,, denotes either the universal or the reduced crossed-product
norm,).

Proof. Let¢: &€ = ff(A), Y(a®g) = axg, be the isomorphism of Proposition B.7],

where & = ]-'E/N(Aff) ®ANxG/N (FN(A) %, (G,N)). This isomorphism induces

an isomorphism ¢: K(€) = IC(]-"E(A)) = Af determined by the equation

P(T)(W(a®g)) =¢(T(a®g)).

On the other hand, since AY x G/N = K(FN(A) %, (G,N)), we have a canon-
ical isomorphism (Aﬁ’)ﬁ/N = IC(.FE/N(AfY)) = K(€) sending an operator S €
IC(]-"S/N(AQI)) to the operator S® 1 € K(E) given by (S®@1)(a®g) = S(a) ® g.

We therefore get an isomorphism (A/JY)E/N = A9 sending S € (ALV),S;/N to
P(Sel)e AS. Applying this to S5 = EG/N(b) = EY(c) for b =EN(c), ¢ € A, we
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see that S is G-invariant. Hence we get:
b(S)(W(a®g)) =¢(Sa®g) = Saxg

= Ag(s)fl/Qas(Sa-g(sil))dg/NsN
G/N

=5 Ac(s) Y2ag(a-g(s7h)) dg/nsN
G/N
=5-(axg)=5-¢(awyg)
so that v (Al]f)f/N — AS is the extension of the identity map on EG/N(AN). O

Suppose that H is a closed subgroup of a group G and that (A4,«) is an H-
algebra. Then Cy(G) ® A becomes a weak G x (G x H)-algebra with respect to
the structure map ¢ : f — f® 1 from Cy(G) into ZM(Co(G) ® A). We let G
act on Cp(G) ® A via 7 ® id, where 7 denotes the left translation action of G on
itself, and we let H act on Cy(G) ® A via 0 ® «, with o,(f)(s) = f(sh) for all
f€Cy(G), se G, he H. The actions of G and H on Cy(G) ® A clearly commute
and make the structure map 1 equivariant with respect to both G and H actions.
Since H acts properly on G, the restriction of the action to H gives Co(G) @ A the
structure of a proper G x H-algebra and we can form the H-fixed-point algebras
(Co(G) ® A) for this structure. Since the structure map ¢ takes its values in
the center ZM(Cy(G) ® A), it follows from [2, Theorem 3.28] that they do not
depend on the given crossed-product norm || - ||, on C.(H, Cy(G) ® A) (indeed, for
centrally proper actions all such norms coincide with the universal norm || - ||,).
Note that the G-action on Cy(G) ® A factors to a G-action on the H-fixed-point
algebra (Co(G) ® A)H (we may now omit the norm p in the notation).

The algebra (Co(G) @ A)H is actually well known under the name of induced
algebra Ind$ (A, o) and can be described as follows:

: F(sh) = ap,-1(F(s)) Vs € G,h € H}

G _
Ind (A4, ) = {F € (G, A) and (sH || F(s)]|) € Co(G/H)

Indeed, identifying M(Co(G) ® A) with the set of bounded strictly continuous
functions from G to A, it is an easy exercise to check that (Co(G) ® A)H is just
the set of functions in Indg(A,a) which have compact supports mod H. In this
picture, the G-action is given as the induced action

Inde : G — Aut(Ind$ (4, a)); Ind as(F(t) = F(s™'t) Vs,t € G.

If A= Cy(Y) for an H-space Y, we get Ind% Co(Y) = Co(G x g Y), where the
induced G-space G xg Y is defined as the quotient H\(G x Y') under the action
of H on G x Y given by h(s,y) = (sh™!, hy). Moreover, if we start with a weakly
proper Y x H-algebra (A, a, ¢), the algebra Cy(G) ® A actually becomes a weakly
proper (G xY') x (G x H)-algebra via the obvious structure map ¢ : Co(G xY) —
M(Co(G) ® A). Tt follows then from [2, Proposition 3.12] that the H-fixed-point
algebras (Co(G) ® A)!l and the corresponding modules F,(Co(G) ® A) coincide, no
matter whether we regard Cyp(G) ® A as a weakly proper (G xY') x H-algebra or a
weakly proper G x H-algebra. But if we view it as a (G x Y') x (G x H)-algebra,
we see that Ind$ (4, a) = (Co(G) @ A)H carries the structure of a weakly proper
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(G xg Y) x G-algebra, and by Theorem B.8] we obtain isomorphisms
(Indf (4, @))7 = ((Co(@) @ AT = (Co(G) ® A)FH
= ((Co(G) @ A)9)[T = AT

o= o

(3.9)

where ||-||,, denotes either the universal or the reduced crossed-product norm (every-
where). The last isomorphism in (89 is induced by the H-equivariant isomorphism
A=Tnd%(A,id); a — 1g ® a. We summarize our discussion as follows:

Proposition 3.10. Let H be a closed subgroup of G and let (A, «, ¢) be a weakly
proper Y x H-algebra. Let || - ||, denote either the universal or reduced crossed-
product norm for both G and H. Then there is an isomorphism

(3.11) Al 2y (Ind§ (A, o)) § e,

sending m € A8 C M(A)H to the constant function t — m from G to M(A)
G C M(Co(G) @ A)E.

C
Proof. The only statement which is not instantly clear from the above discussion is
the special description of the isomorphism Af = (Ind$ (A, @))$. But this follows
easily from the description of the isomorphism ((Co(G) ® A)9)H = Al in (BJ)
and the fact that, according to Theorem B.8] all other isomorphisms in (39]) are
induced by the identity map on (Co(G) ® A)F*H. O

viewed as an element of (Indg(A,a))

Remark 3.12. Later we shall apply the above proposition to the special situation
in which Y = G equipped with the right translation action of H. Let (A, )
be a G x H-algebra. Notice that the induced space G x g G is G-homeomorphic
to G/H x G via [(s,t)] — (sH,st). If we forget the factor G/H, we see that
Indg(A,a) carries a structure of a weakly proper G x G-algebra with structure
map 1 : Co(G) — M(Ind% (A, a)) given by the formula

(W()F)(s) = d(re1(f)F(s) Vf € Co(G), F € Indf(A, ).

It follows from [2| Proposition 3.12] that the G-fixed-point algebra for this
G x G-structure on Ind% (A, a) coincides with the G-fixed-point algebra for the
(G xg G) x G-structure, hence Proposition B.I0 will still apply if we just consider
the G x G-structure.

Suppose now that (A, «, @) is a weakly proper X x G-algebra and that H is a
closed subgroup of G. Then (A, a|,¢), where «| denotes the restriction of a to
H, is a weakly proper X x H-algebra, and we close this section by proving an
isomorphism

Fi(A) @ax,a X, (A) = Fil(A),
where || - ||, denotes either the universal or the reduced crossed-product norm.
Here Xg’M(A) denotes Green’s Co(G/H, A) 1, G-A x,, H imprimitivity bimodule
of [IT} §2]. Recall that it is the completion of C.(G, A) viewed as a C.(H, A)-pre-
Hilbert module with respect to the module action and inner product given by the
formulas

€ plt) = / i (W)E(th) s (9(h=)) dh,
H
(€ 1M carn) (1) = 112 (B) / a1 (€(s) n(sh)) ds

G
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where v (h) := \/Ag(h)Ag(h~1) for h € H. The above formulas are taken from
[29, Theorem 4.15]. The left action of C.(G,Cy(G/H,A)) € Co(G/H,A) x, G on
C.(G, A) is given by the formula

Frels) = [ St smane(es) a.

The G-equivariant imbedding of A into M(Cy(G/H, A)) as constant functions in-
duces the left action of A x, G on Xfj (A) given on the level of functions on

[,€ € Cc(G, A) by the usual convolution (f-£)(s) = f+£(s) = [ f(t)ar(E(t™"s)) dt.
Combining these formulas with the formulas for the pre-imprimitivity modules
FE(A) and FH(A) as given in §2we get the following:

Proposition 3.13. Let A be a weakly proper X x G-algebra and let H be a closed
subgroup of G. Let = or p=r. Then there is an isomorphism

F(A) @an, 6 X (A) = Fil(A)
of Hilbert A x g ,, H-modules which sends an elementary tensor a®§ in FE(A) e
Ce(G,A) toax& = [, Ac(t) V2 (a-£(t71)) dt.

The induced *-homomorphism on compact operators AS — M(Af) 18 given
by the identity map on AS by viewing m € AS as a multiplier of Aﬁl via multi-
plication in M(A): a-m = am and m-a = ma for all a € AH.

Proof. 1t is enough to check that the map a ® £ — a % £ preserves inner products

and has dense range. For the inner products we let a,b € F.(A) and &, € C.(G, A)
and we compute

(a®&lbe 77>>CC(H,A)(h) = ((£] (al b>>CC(G,A) ’ 77>>CC(H,A) (h)

ZVH(h)/ / Ag(t) a1 (&(s) an(aar(by(t ™ sh)))) dt ds.
acJa
On the other hand, we compute

(ax&lbx o, a(h) = Am(h)™2(ax &) an(bxn)

= AH(h)71/2/G/GAg(st)il/zozs(5(871)*0,*)0[;”(1)5(1571)) dt ds.

If we apply the transformation s — s~! followed by the transformation ¢ — h~!s~ !¢
to the above integral, we see that (a®¢[b&n) ¢, (g 4)(h) = (ax§[b"N) ¢ (51, 4)(h) for
all h € H. A similar but easier computation shows that ax(£-@) = (ax€)-pforalla €
FE(A), &£ € C.(G,A) and ¢ € C.(H, A), which then implies that the map a®¢ ~ ax*
¢ extends to an isometric Ax, H-Hilbert-module map from F¢' (A)®ax, ,cXff ,(A)
into }"f (A). Surjectivity of this map follows from standard approximative unit
arguments as done, for example, in the proof of [2, Proposition 3.32]. For the final
assertion, it is enough to check that given m € AS, we have (m-a)*& =m- (a*§)
for all a € F(A) and ¢ € C.(G, B). This follows from a simple computation using
that m is G-invariant. O

Observe that the canonical homomorphism Afj — M(Af ) can be used to induce
representations from Af to Aff. The above proposition says that this corresponds
to the induction process from representations of A, H to representations of Ax,G
via Green’s imprimitivity bimodule. This is especially interesting if the involved
actions are saturated, in which case F, f (A) and F, f (A) are imprimitivity bimodules
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implementing Morita equivalences Af ~ A x, G and Af ~ A x, H, so that we
get bijections between the spaces of representations Rep(Af) = Rep(4 %, G) and
Rep(All) = Rep(A x,, H). In this situation the induction process Rep(A x,, H) —
Rep(A x,, G) is therefore essentially equivalent to Rep(Af) — Rep(Af), but the
latter might be easier to describe in some situations.

4. MANSFIELD’S IMPRIMITIVITY THEOREM

As a consequence of our previous results, we deduce Mansfield’s Imprimitivity
Theorem for both universal and reduced crossed-product norms. So in what follows
next we let 6 : B — M(B® C*(G)) be a coaction of G on the C*-algebra B. Recall
from §2that B ><15(A? carries a canonical weakly proper G x G-structure (B ><1<sCAT' ,Ja, g)
which restricts to a G x H-structure (B X CA?, Jja, S|H) for every closed subgroup H
of G. Since right translation of H on G is free, we see that F (B x5 G) implements
a (B X CAT') f —(Bxs @) X, H imprimitivity bimodule for every crossed-product norm
| -1l on Ce(H, B x5 G).

In what follows, we want to compare this result with the various versions of
Mansfield’s Imprimitivity E}Eorem for coactions which give rise to Morita equiv-
alences between B, x5 | G/N and (B xs G) X, N, where the notation (B,,d,)
indicates that we have to be careful about the type of coactions we may consider
here. Indeed, we shall restrict below to the two cases where || - ||, is either the
universal norm || - ||,, or the reduced norm || - ||,.. Then, as explained in §2 (B,, d,,)
is the maximalization and (B,,d,) is the normalization of (B,d). Recall that for
any coaction ¢ : B — M (B ® C*(@G)), the restriction 4| of § to the quotient group
G/N is given by the composition

8| : B -5 M(B®C*(G)) & M(B ® C*(G/N)),
where gy : C*(G) — C*(G/N) denotes the canonical quotient map.

Theorem 4.1 (Mansfield’s Imprimitivity Theorem). Let (B,d) be a G-coaction
and equip the crossed product B x5 G with the canonical weak G x G-algebra
structure. Then there are canonical isomorphisms

By x5, G/N = (BxsG)Y and B, x5, G/N = (BxsG)Y.

In particular, if (B, §) is normal, FN (B ><156A¥) becomes a B X CT/Z\\P(B x15G) 3, N
imprimitivity bimodule and if (B,6) is mazimal, then FX (B x4 CAT') becomes a
B x5 G/N~(B x5 G) xy N imprimitivity bimodule.

Remark 4.2. We should remark that the isomorphism for normal coactions has been
established before by Quigg and Raeburn in [26, Proposition 4.1] in the case where
N is amenable, and shortly after that by Kaliszewski and Quigg in [I8] for arbitrary
closed normal subgroups N. Both proofs rely heavily on Mansfield’s original proof
of his imprimitivity theorem and they use the Mansfield algebra D C B X G as a
dense *-algebra which implements properness in Rieffel’s sense ([27]). So a priori,
the fixed-point algebras and the bimodules considered in those papers could be
different from ours, but we shall see below that they are not.

The isomorphism for maximal coactions is new but a version of Mansfield’s
Imprimitivity Theorem for maximal coactions has been shown by Kaliszewski and
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Quigg in [I8] using quite different techniques. The above gives a unified treatment
to all of these different versions and does not rely on Mansfield’s techniques.

Proof of Theorem Bl In what follows let A := B x4 G. Tt follows then from
[T, Theorem 4.6] that (B,,d,) = (A%9,6%) and (B,,6,) = (A%, 6¢) where the

u ' Yu rorr

coactions (55, with 4 = w or u = r, are given by the formulas
(4.3) (55(m) = (jg ®id)(we)(m @ 1)(jg ® id)(wg)*  for all m € A

(see also [I, Remark 4.14] for the correct interpretation of this formula). On the
other hand, Afy is a weak G/N x G /N-algebra and by Proposition B.7] we have a

canonical isomorphism W : As — (Aﬁ[ )5/ N given via the canonical inclusion of
A¢ into (Aﬁ)S/N. Applying [Il Theorem 4.6] again, we see that (Af)’),cj/N carries
a G /N-coaction 55/1\[ given by

8N (n) = (58 @ 1d)(weyn) (n® 1)(j§ ®id)(wan)* for all n e (A))FN,
where j&: Co(G/N) — M(A]) is the structural homomorphism induced from
ja: Co(G) — M(A). Tt is given by the equation j& (E™N(f)) = E*Y (jg(f)) for
all f € C.(G). We claim that 5E/N corresponds to the restriction 65| of 65 to
the quotient G/N via the isomorphism A/Cj = (AY )ff/ N Notice that J&, once
composed with the canonical homomorphism «: A,ﬂv — M(A), coincides with the
restriction of jg to Co(G/N) C Cy(G), that is, ko j& = jeloyc/n). Then, if
qn: C*(G) — C*(G/N) is the quotient map, we get

(e ® an)(we) = (je ®id)(we/n) = (ko j& ®id)(wa/n),

so that

5ff|(m) = (id®q) o 5f(m) = (k0 j§ ®id)(wg/n)(m® 1) (ko j& ®id)(wg/n)*

= (k®1id) (65N (m)),

for m e AY C (Af}')f/N, which proves the claim.

Now [I, Theorem 4.6] applied to the weak G/N x G/N-algebra Al gives an
isomorphism Afy = (Ag)S/N X sa/N CT/]\V and if we combine this with the 5/7\[—180—

7

morphisms ((Aﬁ’)f/N, 55/N) & (Af, (55 ) = (By,0,) and the fact that B, x5, G =
B x5 G for @ = u,r, we finally obtain a chain of isomorphisms

(B x5 G = A = (AN xj00x G/N = A 5,1 G/N = By, x5, G/N.
This finishes the proof. |

In what follows next, we want to compare our module F f (B x5 @) with Mans-
field’s original construction in [22] which provides us with an explicit description
of a dense submodule of the (B x5 G)/-(B x5 G) %, H bimodule F(B x5 G)

and a subalgebra D sitting densely inside the fixed-point algebra with compact
supports (B x5 G)H with respect to any chosen norm p on C.(H, B x5 G) as above.

Notation 4.4 (cf. [22]). For a locally compact group G we let B(G) = C*(G)*
denote the Fourier-Stieltjes algebra and we denote by A(G) C B(G) the Fourier
algebra of G, i.e., the set of matrix coefficients of the regular representation Ag of G.
For w € B(G) we let &, : B — B denote the composition &,,(b) = (idg ® w) o 4(b).
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Let A.(G) := A(G) N C.(G) C B(G). For a compact subset E C G we denote
by Cg(G) the set of functions f € C.(G) with support in E. Recall that EX :
C.(G) = C.(G/H) denotes the surjective linear map given by

B (1)(gH) = [ (gh) dh.
H
For w € A.(G) and E C G compact, let
Du,p. = jB(0u(B))jc(EF (Cp(Q))) € M(B x; G)

and
Dy = U {D(w,E,H) cweA(G),ECG compact}.

We call Dy the H-Mansfield subalgebra of M(B X5 CAT') We simply write D in the
case where H = {e}.

We should note for later use that the general assumption on our coactions being
non-degenerate — in the sense that §(B)(1p ® C*(G)) = B ® C*(G) — implies that

(4.5) Be =04, (B) = {0uw(B):w € A(G)}

is norm dense in B. This follows from [20, Theorem 5] together with the fact that
A.(G) is weak-* dense in A(G). Mansfield shows the following:

Lemma 4.6. Let (B, ) be a coaction of G and let H be a closed subgroup of G.
Then
(1) Dy is a dense *-subalgebra of C*(jp(B)jc(Co(G/H))) € M(B xs @) and
we have DH = jg(CC(G/H)) . DH :/\DH jg(CC(G/H))
(2) D is a dense *-subalgebra of B x5 G.

Proof. The first assertion in (1) follows from [22, Lemma 11] and the equation
Du = je(C.(G/H)) - Dy = Dy - jo(C.(G/H)) is a consequence of [22, Lemma 9]
(see also [12, Lemma 3.2]). Note that Mansfield proved both lemmas in the full
generality of arbitrary closed subgroups H of G. Item (2) follows from [22] Theorem
12] in the special case H = {e}. O

In the special case where H = G we get the *-algebra Dg = e 4. (g JB(0w(B)).
This *-algebra has an easier description:

Lemma 4.7. B. = d4,(c)(B) is a dense *-subalgebra of B and jp : B. — Dg s
an isomorphism of *-algebras. In particular, Dg = jp(0a,(c)(B))-

Proof. We already observed above that B, = d4 () (B) is dense in B and the fact
that it is a *-subalgebra of B follows from items (ii)-(iv) of [22, Lemma 1]. To see,
for instance, that B, is a vector subspace, observe that, by [22] Lemma 1(ii)], if
b1,by € B, v1,v2 € A.(G) and w € A.(G) is such that w = 1 on supp(vy ) Usupp(va),
then &y, (a1) 4 0y, (a2) = o, (@1) + Swuy(a2) = 04(0y, (a1) + 0y, (az)). Ttems (iii)
and (iv) in [22] Lemma 1] imply that B, is a *-subalgebra of B.

To show that jp gives a *-isomorphism B, — D¢, we first show that it is
surjective, that is, jp(da.(c)(B)) = Dg. For this assume that w € A.(G) is fixed
and that (b,)n is a sequence in B and b € B such that jp(0,(b,)) — jp(b). It
suffices to show that jp(b) = jp(d,(b)) for some v € A.(G).

We first note that I = ker jp is annulated by d,, : B — B for any w € A(G). This
follows from the fact that the kernel ker A\¢ C C*(G) is annulated by the elements



266 ALCIDES BUSS AND SIEGFRIED ECHTERHOFF

in A(G) viewed as linear functionals of C*(G). Indeed, if we realize B x45G as a sub-
algebra of M(B ® K(L?G)) via the covariant representation ((id ®\g) 0,1 ® M),
we see that ker jp = ker(idp ®\g) o §. Moreover, since for w € A(G) the linear
functional on C*(G) associated to w factors through a functional w, of C*(G), we
see that d,, is given by the composition

0w = (idp @ w,) o (idp ®Ag) 0 4.

Hence ker jp = ker(idp ®Ag) 0 d C ker d,,. Suppose now that jp(d.,(b,)) = jp(b).
By passing to a subsequence, if necessary, we may choose elements ¢,, € ker jp with
0w (bn) + ¢, = bin B. Now let v € A.(G) such that v =1 on supp w. Then

G (bn) = 0w (bn) = 04(6w (D)) = 6460y (b)) + €n) — 04(D),

and hence ]B(éw(bn)) - jB((Sv(b))’ which proves that ]B(b) = jB(év(b)) € jB(Bc)7
hence jg(B.) = Dg.

We now use item (ii) of [22] Lemma 1], that is, the fact that d,, (b) = 0., (5, (b)) for
all w,v € A.(G), to show that jp : B. — D¢ is injective and hence an isomorphism
of *-algebras. For this assume that jg(,, (b)) = 0 for some w € A.(G) and b € B.
Let v € A.(G) such that vw = w. Since ker jp C kerd,, we get 0 = 6, ( (b)) =
Opw (D) = 64 (D), and the result follows. O

For later use, we should also note that Dy is a bimodule over B, = Dy with
bimodule operations given by the usual multiplication inside M(B X5 G), that is,

for d € Dy. This gives a canonical imbedding of B, = d4,(¢)(B) into the (algebraic)
multiplier algebra M(Dp).

Recall from [1] that for any weakly proper G x H-algebra A and for any given
crossed-product norm || - ||, on C.(H, A), the Aff~A %, H-imprimitivity bimodule
F.(A) is given as the completion of the pre-imprimitivity AZ-C.(H, A) bimodule
Fe(A) :== C.(G) - A. Moreover, we showed in [I, Lemma 2.12] that all bimodule
operations are continuous with respect to the inductive limit topologies on A,
C.(H, A) and F.(A), respectively, and that in all three spaces, inductive limit con-
vergence implies norm-convergence in their respective completions for any chosen
norm || - ||,. Similarly, the canonical “conditional expectation”

st
Ef A, — A2 EH () :/ aq(z) dt,
H
is inductive limit continuous on A, = C.(G) - A-C.(G) and we have A7 = EH(A,).
Recall also that the inductive limit topology on C.(H, A) is the usual one, and
that a net (a;);er in F.(A) (resp. in A.) converges in the inductive limit topology
to some a if it converges to a in norm and there exists an f € C.(G) such that
a; = f-a; (resp. a; = f-a;- f) for all i € I. Similarly, a net (b;);c; in AZ converges
to b € AH in the inductive limit topology, if it converges in M(A) in norm and if
the following are satisfied:
(1) there exists a ¢ € C.(G/H) such that ¢ - b; -1 = b; for all i € I, and
(2) for all f € C.(G) the net b; - f converges to b - f in the inductive limit
topology of A,

(recall that b- f € A, for all b € AZ and f € C.(G), where the multiplication is
performed inside M(A)).
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Recall that we always use the notation f - a for ¢(f)a if ¢ : Co(G) — M(A) is

the given structure map. In the case where A = B x5 G, this structure map is given
by the canonical map jg : Co(G) = M(B x5 G). Thus we get the following:

Lemma 4.9. Let (B, ) be a coaction of G and let H be a closed subgroup of G.
Then

(1) D is inductive limit dense in both (B x5 Q). and Fo(B x @)

(2) Dy is inductive limit dense in (B x5 G)H .
In particular, every generalized fized-point algebra (Bxgé)f is a norm completion
of Dy for some suitable norm.

Proof. Since D is norm dense in Bx4@ it follows that D = jg(Co(G))-D-ja(Ce(G))
is inductive limit dense in jo(Ce(@)) - (B x5 G) - ja(Ce(G)) = (B x5 G). and a
similar argument shows density in F.(B X é) To check that Dy is a subalgebra
of (B x; é)f , we first observe that Dy lies in the (classical) fixed-point algebra
M(B x5G)H. Moreover, multiplying Dy = ji(Co(G/H))- Dy - jo(Co(G/H)) with
ja(f) for some f € C,(G) from either side gives an element in D C (B x5 G)..
Thus it follows easily from the definition of the fixed-point algebra with compact
supports as given in (ILI)) that Dy C (B x5 G)H. Since

(B><156)£I<<D|D>> CE(D) C Du

(Bx]éa)?((D | DY) is inductive limit dense in (B X; @)f due to the facts
that D is inductive limit dense in (B x5 G). and that every element in (B xs G)Z
can be written as an inner product of two elements in (B x5 G)., it follows that

Dy is inductive limit dense in (B x5 G)CH . The final assertion now follows from the
fact that inductive limit convergence implies norm convergence in (B X G)f with

and since

respect to any given crossed-product norm || - ||, on C.(H, B X; Q). O

Remark 4.10. In the case H = G, the above result shows that for any coaction
(B,d) of G, the dense *-subalgebra B. = d4,(¢)(B) of B maps faithfully onto the
inductive limit dense *-subalgebra jg(B.) = D¢ of (B X @)f It follows then from
the above lemma that for a given norm || - ||, on C.(G, B x5 @) the p-fixed-point
algebra B, := (B X5 @)5 can be obtained as a completion of B. = D¢ with respect
to a suitable norm induced from || - ||,, via the bimodule F,,(B % G). In this picture,
the canonical epimorphisms
B, - B — By,

with B, := (B X; é)ff and B, := (B x4 G)C, respectively, are given by the identity
map on B, and it is easy to check that these maps are é—equivariant with respect
to the coactions d,,d, and J,, respectively (use (B,d) = (B,,0,) for a suitable
crossed-product norm || - ||, and formula ([3])). This gives a very concrete picture
for the maximalization (B,,d,) and the normalization (B,,d,) of (B,d) and their
connections to the given coaction (B, ).

Suppose now that H = N is a closed normal subgroup of G, and § is an arbitrary
coaction of G on B. Consider the representation jpx jg| : Bx5G/N — M(B Naé).

It is clear that it maps the dense subset ip(B.)ig/n(Ce(G/N)) of B X (T/J\V
onto the dense subspace jp(B.)jc(Cc(G/N)) of Dy (where (ip,iq/n) denotes the
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canonical covariant representation of (B,d]) into M(B x4 CT/]\V )), which implies
that jp % jg| maps B x5 G/N onto the closure (B x5 @)Y of Dy in M(B x5 G),
that is,

Im(jp % jo|) = (B x5 G),Y.
Moreover, by Lemma 3.1 in [I7], jp % j¢| is faithful if and only if ker(jp) C ker(ip)
(this also follows from our Lemma [E1T]). In particular, if ¢ is a normal coaction,
ie, if jg : B — M(B x5 G) is injective, then jp X jg| can be viewed as an
isomorphism:

B x5 G/N =5 (B x; G)N.
This gives an alternative (and probably more concrete) description of the isomor-

phism B x5 G/N = (B x5 @)Y of Theorem L] for normal coactions.
In the case of maximal coactions § = J,,, there are canonical *-homomorphisms

Ip:B— M((Bx;G)Y) and lgn : Co(G/N) = M((B x5 G)Y)
in which for b € B, the element Iz (b) acts on the dense subalgebra Dy via multi-
plication inside M(B x5 G) (see equation (A8)). Similarly, if f € C.(G/N), then

la/n(f) is determined via the obvious left and right actions of jg(f) on Dy. The
following corollary is then a straightforward consequence of Theorem ET]

Corollary 4.11. Let (B,d) be a mazimal coaction of G and let N be a normal
subgroup of G. Then there is a unique covariant homomorphism (Ip,lc/N) of

(B,6]) into M((B x5 Q)N) given on B, and C.(G/N) as above such that the

integrated form lp X lg N implements the isomorphism

Ip X ZG/N : B X5 (7/}7—) (B Xs @)Ju\]
of Theorem 11

Proof. In the notation of Theorem Il we have B = B, and A = B X G. If we
follow the arguments given in the proof of that theorem we see that the isomorphism
B x5 (T/J\V >~ (Bx5G)Y is given on the level of (Bx5G)N C M(Bx4G) by sending
B. C (B x5 G)¢ to jg(B,) € M(B x5 Q) and C.(G/N) to ja|(Ce(G/N)) C
M(B x5 @) But this means that it coincides on these dense subspaces of B and
Co(G/N) with Ip and I/, which implies the result. O

Of course, the results presented in this section also provide versions of Mansfield’s
imprimitivity theorems for “crossed products by homogeneous spaces” as considered
in [612]: if 0 is a coaction of G and H is a closed subgroup of G, then the reduced

crossed product B X C?/-T{ of B by the homogeneous space G/H is defined in [6]
as

B x5, G/H = jp(B)ja(Co(G/H)) € M(B x5 G).
Since the reduced fixed-point algebra is the closure of (B X @)f inside M (B x5 @),
which coincides with the closure of Dy by Lemma 9, we see that

B x5y (ﬁ = (B X s @)7{{

and our results provide us with an imprimitivity bimodule (B x; é) between

B x5, CT/T{ and (B % @) x, H. This coincides with the one obtained in [I2]. On
the other extreme, it makes perfect sense to define the universal crossed product
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B X5 GT/ET of B by the homogeneous space G/H as the universal fixed-point
algebra

(4.12) B s, G/H = (B x5 G)H,

which then provides us with the Morita equivalence F (B x CAT') between B X,

G{/T-I and (B X; @) X, H. Note that for normal N and arbitrary coactions § we
get isomorphisms

B x5, CT/]\V = B, X, CT/]\V and B X5, 5/7\7 = By X5, CT/]\V

but it is important here to use the normalization (B;,d,) in the first isomorphism
and the maximalization (B,, d,) in the second, since in general we do not have iso-
morphisms between By, X5, CT/J\\/' and B; X5, | CT/J\\/' (e.g., take N = G, in which case
we obtain the algebras B,, and B,, which are often different if G is not amenable).

As far as we know, there was no general definition of the universal crossed product
by homogeneous spaces as in [IZ) before. However, such crossed products have
been defined in the special case of dual coactions, i.e., in the case B = A X, G with
dual coaction § = & for some G-algebra (A4, a). In this situation the crossed product

B >457u(?/7{ has been defined in [6] as the crossed product Co(G/H, A) ;5. G, where
here 7 denotes left translation of G on G/H (see the discussion before Lemma 2.4
in [6]). Let us now check that both definitions agree in this case. By the Imai-Takai
Duality Theorem (8, Theorem A.67]), we have a canonical isomorphism of weak
G x G-algebras:
Bx; G= A® K(L*G)

where A ® K(L?G) is endowed with the G-action o ® Ad,, and the structure map
1@ M: Co(G) - M(A® K(L?*G)). But then Proposition 5.7 in [2] shows that

(B x5 G)F = (A x K(L2G)T = Ind$(A) xma., G = Co(G/H, A) Xrga G.

5. TWISTED LANDSTAD DUALITY

Let G be a locally compact group and N a closed normal subgroup of G. In this
section we are going to study weak G x N-algebras, that is, C*-algebras A endowed
with an N-action « of N and an N-equivariant non-degenerate *-homomorphism
¢: Co(G) = M(A), where Cy(G) is endowed with right translation action of N.
Since this action is free and proper, the corresponding Hilbert A x, , N-module
Fu(A) implements a Morita equivalence between A = KC(F,(A)) and A x4, N
for every crossed-product norm || - ||, on C¢(N,A). Assume now that || -, is a
norm for which the dual N-coaction & on A %, N factors through a coaction @,
on A g, N. By Lemma 4.12 in [I], we know that F, (A) carries a G-coaction 05
given by:

(5.1) 67(8) = (¢ ®@id)(wg)(§ @ 1) forall § € Fe(A) = ¢(Ce(G))A

which implements a Morita equivalence between the inflation Inf &, of the dual
coaction &, on A x4, N, and the G-coaction 6{:’ on ALV induced by d which is
given by:

(5.2) (55(m) = (¢ ®id)(we)(m ®1)(¢ ®id)(we)*  for all m € AN

(see [1I, Remark 4.14 ]). Our first goal is to show that ¢, is a twisted coaction in
the following sense.
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Definition 5.3. A twisted coaction of (G, G/N) on a C*-algebra B is a pair (J,w)
consisting of a (non-degenerate) G-coaction 6: B - M(B® C*(G)) of G on B and
a twisting unitary over G /N, meaning a unitary multiplier w € U M(B®C*(G/N))
satisfying:

(i) (we)({id®og/nc/n)(wel)=(1d®dg/n)(w);

(ii) (6 ®idg/n)(w) = (ida ® og/N,G)(w @ 1); and
(iii) 0](b) = w(b® 1)w* for all b € B,
where 0¢ /N /N and 0¢/n ¢ denote the flip isomorphisms on C*(G/N)® C*(G/N)
and C*(G/N) ® C*(G), respectively, and §| := (id ® qi) o § denotes the restriction
of § to G/N, where qn: C*(G) — C*(G/N) is the quotient map.

Equivalently (see [26]), a twisted coaction can be defined as a pair (, ¢) consisting
of a coaction § : B - M(B ® C*(G)) and a non-degenerate *-homomorphism
¢: Co(G/N) = M(B) satisfying:

(1) (¢,) is a covariant representation of (B,4d|) into M(B), where t: B — M(B)
denotes the inclusion map, that is,

6[(b) = (¢ ®id)(we/n) (b ® 1)(s ®id)(wg;/n) for all b € B; and
(2) 0(s(f)) =<(f)®1 for all f e Cy(G/N).

In this case, ¢ is called the twisting homomorphism for (B, ).

If the twisting homomorphism ¢ is given, the unitary twist w can be recovered
from ¢ by w = (¢ ® id)(wg/n). Conversely, every unitary twist is of this form by
[26, Lemma A.1], and in this case we say that ¢ is the twisting homomorphism
associated to w or that w is the twisting unitary associated to ¢. We refer to
[9,23,26] for further information on twisted coactions.

To simplify the writing, we shall use standard leg numbering notation like wqs :=
w®1, woz := 1Q@w and wy3 = (Id®c)(w), where o is some suitable flip automorphism
(like oG /N,G/N OF 0g/N,¢ as above). With this notation, the two first conditions in
the above definition can be reformulated as:

(1) W1o2Wi13 = (ld X 5@/]\7)(&)) and (11) (5 ® idg/N)(w) = W13.
The first condition can be interpreted by saying that w € UM(B @ C*(G/N)) is a

corepresentation of G/N on B. Observe that, in this case, if ¢»: B — M(C) is a
*-homomorphism, then (¢ ® id)(w) is a corepresentation of G/N on C.

Definition 5.4. Let (B,d,w) be a twisted coaction of (G,G/N). We say that a
covariant representation (o) of (B, ) preserves the twist if

(5.5) (0 ®@idg/n)(wa/n) = (T @idg/n)(w).

In this case we also say that (7, 0) is a covariant representation of (B, d,w).

A twisted crossed product for (B, d,w) is a C*-algebra C' endowed with a covari-
ant representation (kg, kg) of (B, G,w) into M(C) such that kg(B)ka(Co(G)) is
linearly dense in C and such that for every other twisted covariant representation
(m,0) into M(D) there exists a unique non-degenerate representation 7 3,0 : C' —
M(D) such that 7 = (7 X, 0) o kg and 0 = (7 X, 7) 0 kg.

Remark 5.6. If ¢: Co(G/N) — M(B) is the twisting homomorphism associated
to w, then a covariant representation (m,o) preserves the twist if and only if
olcy(a/ny = mo¢ (see [23, Remark 2.6]).
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Every twisted coaction admits a twisted crossed product which is uniquely de-
termined up to isomorphism and denoted by B X5, G. If B x5 G denotes the
(untwisted) crossed product for (B, ) and (jp,j¢) is its universal covariant Tepre-

sentation, then B X;,, G can be realized as the quotient B X, G= (B x5 G)/Iw7
where

w = m{ker(w x o) : (m,0) is a covariant representation preserving the twist}

is the twisting ideal. In this picture, the universal covariant representation (kg, k¢)
is just the composition (g, © jB,qw © ja), where q,: B x5 G — B x5 G/1, is the
quotient map and 7 X, o is the unique factorization of m x o through (B x5 G)/I,.

Example 5.7. (1) The inflation Inf§ of an N-coaction 6: B — M(B ® C*(N))
is a trivially twisted coaction over G/N, that is, a twisted coaction of (G,G/N)
with respect to the trivial unitary twist w = 1 (this corresponds to the trivial
twisting homomorphism s: Co(G/N) — M(B) defined by s(f) = f(eN)1p for all
f € Co(G/N)). The twisted crossed product B Xiufs1 G is canonically isomorphic
to the original (untwisted) crossed product B x5 N (see [0123]).

(2) Given an arbltrary coaction d: B - M(B®C*(Q)) of G on B, the restricted
crossed product B X G/N carries a canonical twisted (G, G//N)-coaction (8, ®):
the coaction 0 is the integrated form 7 x o of the covariant representation

(7T,0) = ((jB ® 1d) o 63 ]G/N & 1)7
where (jp, ja/n) denotes the universal covariant representation of (B,0]) and the

twisting homomorphism for § is Ja/n, hence & = (jg/n ® id)(wg/n). Moreover,
there is a canonical isomorphism (see [23] and also Remark 7.12 in [20]):

(B X | CT/]\V) NS,&;égB X G.

In Corollary (.25 below we derive this decomposition isomorphism also as a conse-
quence of our results.

If w is a twisting unitary over G/N for (B,0), then the twisting ideal I, is N-
invariant with respect to the dual action g, so that ¢ induces an N-action on the
twisted crossed product B g, @, which we denote by o, If (kp, k) denotes
the universal twisted covariant representation, the homomorphism kg: Co(G) —
M(B s, @) is N-equivariant with respect to the right translation action of N on G,
and hence B X5, G carries a canonical structure as a weakly proper G x N-algebra.

The following result is well known. In [26] Theorem 4.4] it is shown for normal
amenable subgroups and reduced coactions, that is, injective non-degenerate coac-
tions of C}(G). But it is pointed out in the proof of [I7, Theorem 4.3] that the
proof of [26], Theorem 4.4] extends to arbitrary (i.e., also non-amenable) normal
subgroups if one replaces reduced coactions by full coactions of C*(G) as we are
using here.

Proposition 5.8 (Quigg-Raeburn). For a twisted (G G/N) coaction (B,0,w),
there is a G-equivariant isomorphism x: B X; G IndN(B X §,w G) sending
2 € B x5 @ to the function t — (kg x kg)(6,-1(x)) € Ind$ (B X5 0w @)

Remark 5.9. It is clear that the extension of x to the multiplier algebra M (B x5 CAT')
sends j3(b) to the constant function kg (b) = (t — kp(b)) € M(Ind§(Bx;,.,G)) and
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ja(f) to the element ke (f) € M(Ind$ (B x5, G)) determined by the function ¢ —

~

ka(m-1(f)) € M(BXs,,G) with 7 (f)|s = f(st). Hence, x becomes an isomorphism
between the weak G x G-algebras (B X é, ja, S) and (Indjc\;,(B X5 @), ke, Ind ;5\“’)

Observe that the above proposition implies, in particular, that there is a central
homomorphism v¢: Co(G/N) — ZM(B X, @) corresponding to the canonical ho-
momorphism f +— f®1 from Cy(G/N) into ZM(Ind% (B Xs @)) A formula for
1 is given in [26, Theorem 4.4]: it is a certain convolution of jg|c,(q/ny and jp o,
where ¢ is the twisting homomorphism Cy(G/N) — M(B) associated to w.

An easy consequence of the above proposition is the following:

Corollary 5.10. For a twisted coaction (B,d,w), the (untwisted) coaction (B,0)
is normal if and only if kp is injective. Moreover, we have ker(jg) = ker(kp).

Proof. Recall that § is normal if and only if jg: B — M(B X5 @) is injective. Thus
it is enough to prove the final assertion. Let q := kg xkg: B Ng@ — B >457w@ denote
the canonical surjection and let x: B X5 G Indg(B X8, @) be the isomorphism
of Proposition Then, for all b € B, since jp(b) is g—invariant7 we have

XGsO)]e = 4(6,-1(jp (1) = q(ip (b)) = kn(b).

This implies ker(jp) = ker(kp) because x is injective. O

The following result appears as Corollary 4.10 in [26] where, again, amenability of
N is required due to the use of reduced coactions. However, using Proposition 5.8
above, the same proof as given in [26] applies to full normal coactions and non-
amenable V.

Lemma 5.11 (Quigg-Raeburn). Let (w,0) be a covariant representation of a
twisted (G, G/N)-coaction (B,d,w) into M(D). Assume that (B,d) is normal.
Then w X, o is faithful if and only if © is faithful and there is an action of N
on the image of ™ X, o making o into an N -equivariant homomorphism. (The
last condition is equivalent to saying that ker(m X, o) is an N-invariant ideal in

B X §,w é)

Suppose that (B,d,w) is a twisted (G, G/N)-coaction and let (B,,d,) be the
normalization of (B,d). Then it is well known that B X, G =~ B, X5, G. In
particular, covariant representations of (B, d) correspond bijectively to covariant
representations of (B, d,). This correspondence can be described as follows: recall
that (B, d,) can be realized as B, = jp(B) = B/ ker jp and ¢, is given on jp(B) by
conjugation with the unitary (jg ® id)(wg). If (7,0) is a covariant representation
of (B,9), the equation (7 x ¢) o jg = 7 implies that ker(jg) C ker(w), so that
7 factors through a homomorphism =, of B, and the pair (m.,0) is a covariant
representation of (B;,d,). The assignment (m,0) — (7m,,0) is then a bijective
correspondence between covariant representations of (B, d) and (B, d;).

Moreover, if 9: B — B, denotes the quotient map, the unitary twist w for §
induces a twist w, := (o ® id)(w) for §,, and a covariant representation (o) of
(B, d) preserves the twist w if and only if (7, 0) preserves the twist w,.. It follows
that the canonical surjection ¢o: B — B, induces an isomorphism of weak G x N-
algebras:

(5.12) 0% G: B x5, G Byoxs ., G
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Using this observation, we obtain the following generalization of Lemma [B.11] to
arbitrary twisted coactions:

Lemma 5.13. Let (7,0) be a covariant representation of the (G,G/N)-twisted
coaction (B,d,w) such that there exists an action of N on the image of ™ X, o
making o into an N -equivariant homomorphism. Then w X, o is faithful if and

only if kerm = ker kg (= ker (0: B — B,)).

Recall that two twisted coactions (B, dp,wp) and (C, dc,we) are Morita equiv-
alent if there is an imprimitivity A—B-bimodule £ carrying a G-coaction dg com-
patible with 64 and dp and satisfying d¢|(z) := (id ® gn) 0 de(z) = wa(z @ 1wy
for all x € £. The following result is a twisted version of the Landstad Duality
Theorem for coactions we proved in [I] (which is, in turn, a generalization of the
main result in [24]).

Theorem 5.14. Let (A, o, ¢) be a weak G x N-algebra and let || -, be a crossed-
product norm on C.(N, A) for which the dual N-coaction & on A Xy, N factors
through a coaction &, on A X, , N. Then

(i) the G-coaction &) on A} given by equation [B.2) is twisted over G/N
with twisting homomorphism ¢ : Co(G/N) — M(A]) induced from the
structural homomorphism ¢: Co(G) — M(A) as in @BH), ie., w, =
(¢N ®id) (wa/n) is the twisting unitary for (55)’,

(ii) The coaction 6z on F = FJ(A) implements a Morita equivalence between
(AN 6N w,) and the trivially twisted coaction (A g, N,Infa,,1). More-

J7AR N VAR
over, (AN §N) is a mazimal G-coaction and (AN 6N) is a normal G-
coaction.

(iii) If k: AlY — M(A) is the canonical representation given by the extension
of the inclusion map AY — M(A) (see [I, Proposition 3.5]), then the pair
(K, ) is a covariant representation of (A}, 01 ,w,) into M(A) and the cor-
responding integrated form k X, ¢ is an isomorphism Aﬁ] XN G A of
weak G x N-algebras.

Proof. To prove (i), we have to verify the conditions in (1) and (2) in Definition (53]
for the homomorphism ¢~ and the coaction 6{:’ . The condition 55 opN =V @1
follows from equation (5.2)) and the relation (f®1)wg = wa(f®1) for all f € Co(G)
(remember that wg € M(Cy(G) ® C*(@G))).

In order to prove the condition 6} |(m) = w, (m®1)w? for all m € AY we choose
f € C.(G/N) such that m = ¢(f)m. We then compute, for z € C*(G),

(¢ @ qn)(we) (m ® qn (2)) = (¢ @ id)(ild gy ) (wa (f ® 2))(m @ 1)

and also

(" @ id)(we/n)(m @ g (2)) = (¢ @id)(we N (f @ an(2)))(m @ 1).

Now observe that (id ®qn)(wa(f ® 2)) is the function in Cy(G, C*(G/N)) given by
s — f(sN)usngn(z), which is constant on N-cosets and factors to the function
wa/n(f ® gy (2)) in C.(G/N,C*(G/N)). Since ¢ ® id restricts to ¢V @ id on this
space, we conclude that (¢®@qn ) (we)(Mm®qn(2)) = (N ®id)(we/n ) (M@qn(2)) for
allm € AY and z € C*(G), which then implies that (¢®qn)(we) = (¢" ®id)(we/N)
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in M(A} ® C*(G/N)). Therefore

ap [(m) = (¢ ® an)(we) (m ® 1)(¢ @ g ) (w”)
= (" ®id)(wa/n)(m ® 1)(¢" @ id)(wg/w) = wu(m ® Lwy,.

Therefore (55[,(,%) is a twisted action of (G,G/N) on Afy. Moreover, the same
argument just used to verify axiom (1) in Definition yields, for all £ € F.(A),

371(€) = (id@an)37(€) = (p®an) (we) (E®1) = (6" ®id)(wa/n)(E@1) = wu(E®1)

which is saying that (F,dz) implements the desired Morita equivalence between
(Aff, (557, wy) and (A X4, N,Inf @,1). This proves the first assertion in (ii) and the
second assertion follows from the fact that maximality and normality of coactions
are preserved by Morita equivalence and by inflation of coactions (see [7, Proposi-
tion 3.5], [I8, Proposition 7.3] and [§, Lemma 3.19]).

Finally, to prove (iii) we first observe that (k, ¢) is a covariant representation of
(AN §N), that is, that

(k ®1d)(3) (a)) = (¢ @ id)(we)(5(a) @ 1)(¢ @ id)(we;)

for all a € Af. Of course, it suffices to verify this equation for a € Af and then it
follows directly from formula (5.2). Therefore (k, ¢) is a covariant representation
of (A),6}}) into M(A) and an argument similar to that given in the proof of
[24, Lemma 3.10(2)] (replacing G by N where appropriate) shows that the image
of kK X ¢ is A, so that we may view kK X ¢ as a surjective *~homomorphism from
Aﬁ[ XN G onto A. Moreover, it is easy to see that x x ¢ commutes with the N-
and Co(G)-actions. Since ¢|c,(a/n) = K © oV, it follows from Remark that the
covariant representation (k, ¢) preserves the twist w, = ¢V ® id(wg /N). We need
to show that the G x N-equivariant *-homomorphism

AN A
K X, o : A# XN G—- A

is injective. But this follows from Lemma BEI3 and the fact that « : A — M(A)
factors through a faithful map r, : AY — M(A), hence ker x coincides with the
kernel of the normalization morphism Aﬁ[ — AN, O

In what follows next we want to show that, conversely, every twisted coaction
(0,w) is of the kind as in Theorem B4 for the weak G x N-algebra (A, a, ¢) with

A=Bxs, G, a=0, and ¢ = ke /)
In order to prepare the result, we show

Lemma 5.15. Suppose that (6,w) is a twisted coaction of (G,G/N) on the C*-

algebra B. Let | - ||, denote either the full crossed-product norm || - ||, or the
reduced crossed-product norm || - ||, for crossed products by N and G. Then the
cosystems

(B x5 G)5,65) and ((B x5, G)N,6N)

I’RRe e
are isomorphic. The isomorphism maps an element b of the inductive limit dense
subalgebra B, = jp(B.) of (B x5 G)¢ to the element kp(b) in the inductive limit
dense subalgebra kp(B.) C (B x5, G)Y, where B, = da.(c)(B) € B (compare

c

with Remark II0). In particular, we get (B x5 G)¢ = kz(B) C M(B X5 Q).
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Proof. Write A := B X, G. By Proposition 58 we have Ind$(A) = B xs G as
weak G x G-algebras. Then [I, Theorem 4.6] implies that ((Ind%(A))G 69 is the

u U

maximalization and ((Ind%(A))?, 6¢) is the normalization of (B, ). The coactions

55 for p = u,r are given by the formula (as in equation (5.2))
(5.16) 45 (x) = (¢ @id)(we)(x @ 1) (¢ ®id)(ws) for all z € (IndF(A))S,

where ¢ is the structural homomorphism Co(G) — M(Ind% (A)), which is given
by ()¢ = ¢(m-1(f)) (with 7,(f)|s = f(st)) acting on an element F € Ind§ A
by pointwise multiplication. Now, Proposition B.I0 yields a canonical isomorphism

Y: AV = (IndG (A))f, which sends m € AY to the constant function G — M(A),
t — m, which defines an element of (Ind$§(A4))¢ C M(Ind (A))E.

We now show that v is equivariant with respect to the G-coactions (5{7 on Afy and
55 on (Indg(A))f, that is, 5Eow = (¢ ®id)od}), so that ¢ becomes an isomorphism
of é—algebras. To prove this, recall that 55’ is given as in equation (B.2) by the
formula

55(m) = (¢ ®id)(we)(m ®1)(¢ ®@id)(ws) for all m € AY.

As explained in [Tl Remark 4.14], the right hand side of this equation is, a priori, an
element of M(A®C*(G)), but can be interpreted as an element of (ARC*(G))Y —

c

Al ®C*(G). A similar interpretation is used for 55 in (BI6]). Now we observe that
the isomorphism ¢ ® id: A ® C*(G) = (Ind%(A))fj ® C*(G) sends an element
r € (A®C*(G))Y to the constant function ¢ — z from G to M(A® C*(G)) viewed
as an element of M((Ind%(A))fj ® C*(G)). We will apply this to z = ]V (m).
We need to show that the element 65 (¢)(m)) € M(Ind§(A) ® C*(G)) is sent via

the canonical inclusion M(Ind$ (A) ® C*(G)) = M(Co(G, A ® C*(G))) to the
constant function ¢ — 61 (m) from G to M(A ® C*(G)). But given t € G, observe

that (¢ ® id)(w)]; = (¢ ® id)(wg)(1 ® us-1), where t — u, denotes the universal
representation of G into M(C*(G)) (remember that wg(s) = us). Therefore,

)
55 (W(m))]e = (¢ ®id)(we) (W (m) @ 1)(d @ id)(ws) e
= (¢ ®@id)(we)(1 @ up-—1)(P(m) @ 1)(1 ® ur) (¢ @ id)(we;)
= (¢ ®1d)(we)(1h(m) ® 1)(¢ @ id)(wg) = 6 (m).

This proves that i is CAT'—equivariant. Finally, it follows from Remark and the

description of the inclusion of AN into (Ind§(A4))¢ via constant functions that

the isomorphism Al} = (Ind§ A)E >~ (B X5 @)f maps kp(B.) bijectively onto
jB(B.) C (B x5 G)C. This implies the last assertion of the lemma. O

Remark 5.17. The above lemma together with Lemma F.7] imply in particular that
kg : B. — kp(B.) is an isomorphism of *-algebras. Hence we may regard B. as
an inductive limit dense subalgebra of (B X, G) In particular, we see that for

any crossed-product norm || - ||, on C¢(N, B X5 G), the corresponding fixed-point
algebra B = (B Xsw G)]LV can be regarded as a completion of B, with respect
to a sultable norm. Moreover, if the chosen norm || - ||, admits a dual coaction on

(B x5, G) 1, N, we obtain a twisted coaction (6, ,w,) as in Theorem B4
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Theorem 5.18. Let (B, d,w) be a twisted coaction of (G,G/N). Then there exist
(G, G/N)-equivariant epimorphisms

BN & B % By
given by the identity map on B, viewed as a dense *-subalgebra of all three algebras
such that the induced morphisms

BY %55 . G 1w s, G2 BN Mg o G
are isomorphisms of weakly proper G x N-algebras. Moreover there exists a
unique crossed-product norm || - |, on Ce(N, B X5, G) which admits a (5} ,w,)~
(0,w) equivariant isomorphism Biy = B extending the identity on B., and then

.7-7)’ (B %5, é) induces a Morita equivalence between the twisted cosystems

(B,6,w) and ((B x50 G) %, N,Inf(5%),, 1/n)-

Proof. Tt follows from item (ii) of Theorem B4l together with Lemma that
(BY . 6N) is a maximalization of (B,6) and (BY, ") is a normalization of (B, ).

w T r o Yr

Thus it follows from Remark EEI0 that the identity map on B, induces 62,8, 6

qu qr
equivariant epimorphisms BN —-» B — BN By continuity, the composition

gr © qy extends the identity map on (B Xg,, @)C , hence we see that B can be ob-
tained as a completion of BY := (B x;,, G)¢ with respect to a suitable norm || - ..
It follows then from the Rleﬁel—correspondence applied to the (G, G/N)-equivariant
BY—(B 5. @) X, N equivalence bimodule F~ (B How G) that there exists a
unique ¢ crossed-product norm || - ||, on Ce(N, B X5, G) which admits a dual coac-

tion (5“’)u of N such that FY (B x5, G) factors through a §— Inf(éw) equivariant
B—(B x5, G) %, N equivalence bimodule. Since all bimodule operations extend
the operations on the dense submodule FY (B %5, G), it follows that B = B[Y

with isomorphism given via the identity on B, (or even on (B Xg,, G)N). Thus,
the theorem will follow from item (iii) of Theorem [B.14] if we can show that this
isomorphism intertwines the twists w,, and w. The latter will follow if we can show
that the corresponding homomorphisms (., ¢, : Co(G/N) — M(B) coincide. Re-

call that we regard B, as a subset of BY = (B x5, G)N via the identification B, =
kp(B.) C BY. By item (i) of TheoremE]ZIwe have C,,, (f)kB(b) = ka(f)kp(b) for
all f e C. (G/N) b € B.. On the other hand, since (kp, kg) preserves the twist w,
Remark implies that kg(C(f)b) = kB(C(f))kB(b) = ka(f)kp(b), which shows
the desired identity. O

As a direct corollary of the last assertion of the theorem we get:

Corollary 5.19 (Stabilization trick for arbitrary coactions). Every twisted coac-
tion (6,w) of (G, G/N) is Morita equivalent to an inflated twisted coaction (inf e, 1)
for some coaction € of N.

Remark 5.20. In [9] the stabilization trick has been proved for twisted (reduced)
coactions of (G, G/N) with N amenable. As remarked in [I7] (see comments before
Theorem 5.5 in [I7]), the same ideas carry over to prove a stabilization trick for
twisted (full) coactions for arbitrary (non-amenable) N under the assumption that
the underlying G-coaction is normal. Our result works for all twisted coactions

(6,w).
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Using the above results, we may now generalize the notion of “maximal coac-
tions”, “normal coactions”, and “u-coactions” for a given crossed-product norm
|-l on Co(G, B x5 G) as discussed in [IL[7,[16] to the category of twisted coactions:
Definition 5.21. Let (4,w) be a twisted coaction of (G, G/N) on a C*-algebra B.

~

Let || - ||, be the unique norm on C.(N, B X, G) (given by Theorem [.I8) such
that FY (B x4, G) factors through a B—(B X5 G) x,, N Morita equivalence. We
then say that (J,w) is a p-twisted coaction on B. If u = u, we say that (J,w) is
a maximal twisted coaction and if 4 = r, we say that (§,w) is a normal twisted

coaction.

Remark 5.22. Let (B,d,w) be a twisted coaction of (G,G/N), and consider the
weak G x N-algebra A = B x5, G. Then the twisted coaction (6N w,) on AN
serves as a mazimalization of (§,w) and (6, w,) on AY serves as a normalization
of (0,w), while, for an arbitrary crossed-product norm || - ||, which admits a dual
coaction (Sw)u, (6, w,) may be regarded as a p-ization of (6,w).

In this language, (d,w) is a u-coaction if and only if (d,w) = (55, wy). Thus we
see that we get complete twisted analogues of the results obtained in [I]. Although
we do not develop this here, we remark that it is also possible to obtain an analogue
of the categorical Landstad Duality Theorem [I, Theorem 7.2] for twisted coactions
by using essentially the same ideas as used there.

The following result follows immediately from item (ii) of Theorem .14

Corollary 5.23. A twisted coaction (B,d,w) of (G,G/N) is mazimal (resp. nor-
mal) if and only if the (untwisted) coaction (B,0) is a mazimal (resp. normal)
coaction of G. In particular, if N is an amenable closed subgroup of G, then
every G-coaction (B,0) which is twisted over G/N is both maximal and normal.

Recall that a unitary coaction is a G-coaction (B,d) which is twisted over G
(that is, N = {e} is the trivial group in the above notation). Equivalently, this is
the same as a weak G x {e}-algebra, that is, a C*-algebra B with a non-degenerate
representation ¢: Co(G) — M(B). The G-coaction § is then recovered by the
formula §(b) = (¢ ® id)(we)(b® 1)(¢ ® id)(we)*. The above corollary immediately
implies the following result (see also [4, Proposition Al]).

Corollary 5.24. FEvery unitary coaction is mazrimal and normal.

As already mentioned previously, the following decomposition theorem is well
known. (It has been proved by Phillips and Raeburn in [23] for amenable N and
reduced coactions. But in [26] Remark 7.12] Quigg and Raeburn stated that the
amenability of N is actually not necessary if one works with full coactions.) As an
application of our methods, we now derive an alternative proof for this theorem:

Corollary 5.25 (Phillips-Raeburn). For an arbitrary G-coaction (B,d) and a
normal closed subgroup N C G, there is a canonical isomorphism of weak G X
N-algebras:

B)dg@% (B X CT/R]) X5 @,

where (§,0) denotes the twisted (G, G/N)-coaction on B | CT/J\\/' as described in
Example 57 above.
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Proof. Let A be the weak G x N-algebra B X G. For the crossid—\product norms
i =wuor u=r, it follows from Theorem [£1] that Aﬁ[ = B x;,) G/N and we leave
it as an exercise for the reader to check that the isomorphism is equivariant for the
twisted coaction (6, w,) and the decomposition coaction (8,1, @,)- Tt follows from
Theorem [B.T4iii) that we have a natural isomorphism

(5.26) (Bu Néu‘G/N) NS;L,@;LG%A!]Y Ngﬁf’wﬁngA

of weak G x N-algebras for p = u and g = r. On the other hand, since (B,,d,,) is
the maximalization and (B, d,) is the normalization of (B, §) there are equivariant
surjections B,, —» B — B, which therefore induce surjections

By x5, CT/]\V — B Xy CT/]\V - By x5, CT/]\V
which are morphisms of (G, G/N)-coactions and hence also induce surjections
(Bu 0, GIN) 53,5, G = (B 0 GIN) %55, G = (By 5, GIN) 5.5, G.

Moreover, by equation (5.26]), the composition of the two epimorphisms above is
an isomorphism and the first and the third algebras are isomorphic to B x5 G, so
(B X 5| G/N) X5 o G must also be isomorphic to B x5 G, as desired. O

We finish with the following consequence of the Landstad Duality Theorem [5.14],
which shows that Mansfield’s Imprimitivity Theorem [£1] can be enriched to an
equivalence of twisted coactions. This therefore yields a natural connection between
the two main topics of this paper.

Corollary 5.27. Let (B,0) be a mazimal coaction of G. Then there is a coaction
drn on Mansfield’s B x5 G/N-B x; G 5 N imprimitivity bimodule FY (B x4 @)
which is compatible with the canonical twisted coactions on both algebras, namely,
the decomposition twisted coaction (5,@) on B x5 G/N and the trivially twisted

coaction (Inf 8|,1) on B x5 G X5 N. In other words, (FY (B x5 @),5;51) is a
Morita equivalence of twisted coactions

(B x4 G/N,§,0) ~ (B x5 G x5 N, Inf 5], 1).

A similar result holds for normal coactions (B,d) if we replace the universal
crossed products by the reduced crossed products everywhere.

Proof. This follows directly from Theorem [(EI4{ii) (applied to A = B X, @) and the
fact (already observed in the proof of Corollary[5.25) that the decomposition twisted
coaction (0,@) corresponds to the twisted coaction (55 ,wy,) under the canonical

isomorphism B X CT/J\V = (B x5 @)l]j O
Remark 5.28. We should remark that for maximal coactions, the equivalence
(B x5 G/N,8) ~ (B x5 G %3 N, Inf 4])

is one of the main results of [18], where it has also been proved that (B,d) —
(FN(B x5 G),0Fn) may be interpreted as an equivalence between the crossed-

product functors (B, §) — (B xg 6/7\], 8) and (B,68) — (BxsG X3 N, Inf JA\ ) if we
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restrict to maximal coactions (B, d). Our result shows that the natural twists in-
volved match up, so that (B xsG) may be viewed also as an equivalence between

the functors (B, §) — (BNg‘(T/]\V,S,(D) and (B, d) — (B>45@>4:§IN, Inf 5|,1). More-

over, it follows from our Proposition B2 that 7 (B ><1(;CAT') carries a G-action which is
compatible with the natural twisted actions of (G, N) on the left and right coefficient

algebras, namely, the inflation Inf g\ of the dual G//N-action on B x4 CT]]\V (viewed

as a trivially twisted action of (G, N)), and the decomposition twisted action (6 l,en)
on B x5 G X3 N. Therefore FY (B x @) also provides an equivalence between the

functors (B, d) = (B X G/N,Inf6|, 1) and (B,d) — (B X; G X N 5|,LN)
An analogue of these equivalences follows also for normal coactlons (B,9) via

the bimodule FN (B x4 @) This case has been shown before in [8] Theorem 4.21];
see also [19].
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