Harmonic degree 1 maps are diffeomorphisms: Lewy’s theorem for curved metrics
HTML articles powered by AMS MathViewer
- by Gaven J. Martin PDF
- Trans. Amer. Math. Soc. 368 (2016), 647-658 Request permission
Abstract:
In 1936, H. Lewy showed that the Jacobian determinant of a harmonic homeomorphism between planar domains does not vanish and thus the map is a diffeomorphism. This built on the earlier existence results of Rado and Kneser. Schoen and Yau generalised this result to degree $1$ harmonic mappings between closed Riemann surfaces. Here we give a new approach that establishes all these results in complete generality.References
- Giovanni Alessandrini and Vincenzo Nesi, Univalent $\sigma$-harmonic mappings, Arch. Ration. Mech. Anal. 158 (2001), no. 2, 155–171. MR 1838656, DOI 10.1007/PL00004242
- Kari Astala, Tadeusz Iwaniec, and Gaven Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series, vol. 48, Princeton University Press, Princeton, NJ, 2009. MR 2472875
- K. Astala, T. Iwaniec, G. J. Martin, and J. Onninen, Extremal mappings of finite distortion, Proc. London Math. Soc. (3) 91 (2005), no. 3, 655–702. MR 2180459, DOI 10.1112/S0024611505015376
- A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125–142. MR 86869, DOI 10.1007/BF02392360
- Gustave Choquet, Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques, Bull. Sci. Math. (2) 69 (1945), 156–165 (French). MR 16973
- S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333–354. MR 385749, DOI 10.1002/cpa.3160280303
- Hyeong In Choi and Andrejs Treibergs, Gauss maps of spacelike constant mean curvature hypersurfaces of Minkowski space, J. Differential Geom. 32 (1990), no. 3, 775–817. MR 1078162
- Peter Duren, Harmonic mappings in the plane, Cambridge Tracts in Mathematics, vol. 156, Cambridge University Press, Cambridge, 2004. MR 2048384, DOI 10.1017/CBO9780511546600
- Erhard Heinz, On certain nonlinear elliptic differential equations and univalent mappings, J. Analyse Math. 5 (1956/57), 197–272. MR 136852, DOI 10.1007/BF02937346
- Tadeusz Iwaniec, Leonid V. Kovalev, and Jani Onninen, Hopf differentials and smoothing Sobolev homeomorphisms, Int. Math. Res. Not. IMRN 14 (2012), 3256–3277. MR 2946225, DOI 10.1093/imrn/rnr144
- Tadeusz Iwaniec and Jani Onninen, An invitation to $n$-harmonic hyperelasticity, Pure Appl. Math. Q. 7 (2011), no. 2, Special Issue: In honor of Frederick W. Gehring, 319–343. MR 2815384, DOI 10.4310/PAMQ.2011.v7.n2.a3
- Jürgen Jost, Harmonic maps between surfaces, Lecture Notes in Mathematics, vol. 1062, Springer-Verlag, Berlin, 1984. MR 754769, DOI 10.1007/BFb0100160
- Jürgen Jost and Richard Schoen, On the existence of harmonic diffeomorphisms, Invent. Math. 66 (1982), no. 2, 353–359. MR 656629, DOI 10.1007/BF01389400
- H. Kneser, Lösung der Aufgabe 41, Jahresber. Deutsch. Math.-Verein. 35 (1926), 123-124.
- Hans Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), no. 10, 689–692. MR 1563404, DOI 10.1090/S0002-9904-1936-06397-4
- Hans Lewy, On the non-vanishing of the jacobian of a homeomorphism by harmonic gradients, Ann. of Math. (2) 88 (1968), 518–529. MR 232007, DOI 10.2307/1970723
- Peter Li and Luen-Fai Tam, Uniqueness and regularity of proper harmonic maps, Ann. of Math. (2) 137 (1993), no. 1, 167–201. MR 1200080, DOI 10.2307/2946622
- Peter Li and Luen-Fai Tam, Uniqueness and regularity of proper harmonic maps. II, Indiana Univ. Math. J. 42 (1993), no. 2, 591–635. MR 1237061, DOI 10.1512/iumj.1993.42.42027
- Gaven J. Martin, The Teichmüller problem for mean distortion, Ann. Acad. Sci. Fenn. Math. 34 (2009), no. 1, 233–247. MR 2489024
- Miroslav Pavlović, Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 365–372. MR 1922194
- T. Radó, Aufgabe 41, Jahresber. Deutsch. Math.-Verein. 35 (1926), 49.
- J. H. Sampson, Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 2, 211–228. MR 510549, DOI 10.24033/asens.1344
- Richard Schoen and Shing Tung Yau, On univalent harmonic maps between surfaces, Invent. Math. 44 (1978), no. 3, 265–278. MR 478219, DOI 10.1007/BF01403164
- Tom Yau-Heng Wan, Constant mean curvature surface, harmonic maps, and universal Teichmüller space, J. Differential Geom. 35 (1992), no. 3, 643–657. MR 1163452
- Michael Wolf, The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989), no. 2, 449–479. MR 982185
Additional Information
- Gaven J. Martin
- Affiliation: NZ Institute for Advanced Study, Massey University, Auckland, New Zealand — and — Department of Mathematics, Magdelen College, University of Oxford, Oxford OX1 4AU, United Kingdom
- MR Author ID: 120465
- Email: g.j.martin@massey.ac.nz
- Received by editor(s): December 1, 2013
- Published electronically: January 29, 2015
- Additional Notes: Research supported in part by grants from the N.Z. Marsden Fund
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 647-658
- MSC (2010): Primary 30C62, 58E20
- DOI: https://doi.org/10.1090/S0002-9947-2015-06444-7
- MathSciNet review: 3413878