Extremes of $\alpha (\boldsymbol {t})$-locally stationary Gaussian random fields
HTML articles powered by AMS MathViewer
- by Enkelejd Hashorva and Lanpeng Ji PDF
- Trans. Amer. Math. Soc. 368 (2016), 1-26 Request permission
Abstract:
The main result of this contribution is the derivation of the exact asymptotic behavior of the supremum of a class of $\alpha (\mathbf {t})$-locally stationary Gaussian random fields. We present two applications of our result: the first one deals with the extremes of aggregate multifractional Brownian motions, whereas the second one establishes the exact asymptotics of the supremum of the $\chi$-process generated by multifractional Brownian motions.References
- Konrad Abramowicz and Oleg Seleznjev, Piecewise-multilinear interpolation of a random field, Adv. in Appl. Probab. 45 (2013), no. 4, 945–959. MR 3161291, DOI 10.1239/aap/1386857852
- Robert J. Adler, On excursion sets, tube formulas and maxima of random fields, Ann. Appl. Probab. 10 (2000), no. 1, 1–74. MR 1765203, DOI 10.1214/aoap/1019737664
- Robert J. Adler, Elina Moldavskaya, and Gennady Samorodnitsky, On the existence of paths between points in high level excursion sets of Gaussian random fields, Ann. Probab. 42 (2014), no. 3, 1020–1053. MR 3189065, DOI 10.1214/12-AOP794
- R. J. Adler, J. E. Taylor, and K. J. Worsley, Applications of random fields and geometry: foundations and case studies, book in progress.
- Robert J. Adler and Jonathan E. Taylor, Random fields and geometry, Springer Monographs in Mathematics, Springer, New York, 2007. MR 2319516
- Ethan Anderes and Sourav Chatterjee, Consistent estimates of deformed isotropic Gaussian random fields on the plane, Ann. Statist. 37 (2009), no. 5A, 2324–2350. MR 2543694, DOI 10.1214/08-AOS647
- A. Ayache, S. Cohen, and J. Lévy-Véhel, The covariance structure of multifractional Brownian motion, with application to long range dependence, in IEEE, International Conference on Acoustics Speech and Signal Processing, ICASSP, 2000.
- Antoine Ayache, Narn-Rueih Shieh, and Yimin Xiao, Multiparameter multifractional Brownian motion: local nondeterminism and joint continuity of the local times, Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011), no. 4, 1029–1054 (English, with English and French summaries). MR 2884223, DOI 10.1214/10-AIHP408
- Jean-Marc Azaïs and Mario Wschebor, Level sets and extrema of random processes and fields, John Wiley & Sons, Inc., Hoboken, NJ, 2009. MR 2478201, DOI 10.1002/9780470434642
- Simeon M. Berman, Sojourns and extremes of stochastic processes, The Wadsworth & Brooks/Cole Statistics/Probability Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992. MR 1126464, DOI 10.21236/ADA257251
- Simeon M. Berman, Sojourns and extremes of Gaussian processes, Ann. Probability 2 (1974), 999–1026. MR 372976, DOI 10.1214/aop/1176996495
- Krzysztof Dȩbicki and PawełKisowski, Asymptotics of supremum distribution of $\alpha (t)$-locally stationary Gaussian processes, Stochastic Process. Appl. 118 (2008), no. 11, 2022–2037. MR 2462286, DOI 10.1016/j.spa.2007.11.010
- Krzysztof Dȩbicki and PawełKisowski, A note on upper estimates for Pickands constants, Statist. Probab. Lett. 78 (2008), no. 14, 2046–2051. MR 2458013, DOI 10.1016/j.spl.2008.01.071
- K. Dębicki, K. M. Kosiński, and M. Mandjes, Gaussian queues in light and heavy traffic, Queueing Syst. 71 (2012), no. 1-2, 137–149. MR 2925793, DOI 10.1007/s11134-011-9270-x
- Krzysztof Dȩbicki, Ruin probability for Gaussian integrated processes, Stochastic Process. Appl. 98 (2002), no. 1, 151–174. MR 1884928, DOI 10.1016/S0304-4149(01)00143-0
- Krzysztof Dȩbicki, Enkelejd Hashorva, and Lanpeng Ji, Tail asymptotics of supremum of certain Gaussian processes over threshold dependent random intervals, Extremes 17 (2014), no. 3, 411–429. MR 3252819, DOI 10.1007/s10687-014-0186-9
- K. Dębicki, E. Hashorva, and L. Ji, Extremes of a class of non-homogeneous Gaussian random fields, Ann. Probab., in press, 2015, http://arxiv.org/abs/1405.2952.
- K. Dȩbicki and K. M. Kosiński, On the infimum attained by the reflected fractional Brownian motion, Extremes 17 (2014), no. 3, 431–446. MR 3252820, DOI 10.1007/s10687-014-0188-7
- A. B. Dieker, Conditional limit theorem for queues with Gaussian input, a weak convergence approach, Stochastic Process. Appl. 115 (2005), no. 5, 849–873. MR 2132601, DOI 10.1016/j.spa.2004.11.008
- A. B. Dieker and B. Yakir, On asymptotic constants in the theory of extremes for Gaussian processes, Bernoulli 20 (2014), no. 3, 1600–1619. MR 3217455, DOI 10.3150/13-BEJ534
- Julia Farkas and Enkelejd Hashorva, Tail approximation for reinsurance portfolios of Gaussian-like risks, Scand. Actuar. J. 4 (2015), 319–331. MR 3318928, DOI 10.1080/03461238.2013.825639
- Adam J. Harper, Bounds on the suprema of Gaussian processes, and omega results for the sum of a random multiplicative function, Ann. Appl. Probab. 23 (2013), no. 2, 584–616. MR 3059269, DOI 10.1214/12-AAP847
- Enkelejd Hashorva, Lanpeng Ji, and Vladimir I. Piterbarg, On the supremum of $\gamma$-reflected processes with fractional Brownian motion as input, Stochastic Process. Appl. 123 (2013), no. 11, 4111–4127. MR 3091101, DOI 10.1016/j.spa.2013.06.007
- E. Hashorva, M. Lifshits, and O. Seleznjev, Approximation of a random process with variable smoothness, Festschrift in honor of Paul Deheuvels (M. Hallin, D. Mason, D. Pfeifer, J. G. Steinebach, eds.), Springer Verlag, 2015, pp. 189–208.
- J. Hüsler, Extreme values and high boundary crossings of locally stationary Gaussian processes, Ann. Probab. 18 (1990), no. 3, 1141–1158. MR 1062062, DOI 10.1214/aop/1176990739
- J. Hüsler and V. Piterbarg, On the ruin probability for physical fractional Brownian motion, Stochastic Process. Appl. 113 (2004), no. 2, 315–332. MR 2087963, DOI 10.1016/j.spa.2004.04.004
- Georg Neuhaus, On weak convergence of stochastic processes with multidimensional time parameter, Ann. Math. Statist. 42 (1971), 1285–1295. MR 293706, DOI 10.1214/aoms/1177693241
- James Pickands III, Asymptotic properties of the maximum in a stationary Gaussian process, Trans. Amer. Math. Soc. 145 (1969), 75–86. MR 250368, DOI 10.1090/S0002-9947-1969-0250368-1
- Vladimir I. Piterbarg, Asymptotic methods in the theory of Gaussian processes and fields, Translations of Mathematical Monographs, vol. 148, American Mathematical Society, Providence, RI, 1996. Translated from the Russian by V. V. Piterbarg; Revised by the author. MR 1361884, DOI 10.1090/mmono/148
- V. I. Piterbarg, Twenty Lectures about Gaussian Processes, Atlantic Financial Press, London, New York, 2015.
- Stilian A. Stoev and Murad S. Taqqu, How rich is the class of multifractional Brownian motions?, Stochastic Process. Appl. 116 (2006), no. 2, 200–221. MR 2197974, DOI 10.1016/j.spa.2005.09.007
- Michael J. Wichura, Inequalities with applications to the weak convergence of random processes with multi-dimensional time parameters, Ann. Math. Statist. 40 (1969), 681–687. MR 246359, DOI 10.1214/aoms/1177697741
Additional Information
- Enkelejd Hashorva
- Affiliation: Department of Actuarial Science, University of Lausanne, UNIL-Dorigny, 1015 Lausanne, Switzerland
- Lanpeng Ji
- Affiliation: Department of Actuarial Science, University of Lausanne, UNIL-Dorigny, 1015 Lausanne, Switzerland
- MR Author ID: 890491
- Received by editor(s): June 17, 2013
- Published electronically: September 10, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 1-26
- MSC (2010): Primary 60G15; Secondary 60G70
- DOI: https://doi.org/10.1090/tran/6769
- MathSciNet review: 3413855