$K$-theory of endomorphisms via noncommutative motives
Authors:
Andrew J. Blumberg, David Gepner and Gonçalo Tabuada
Journal:
Trans. Amer. Math. Soc. 368 (2016), 1435-1465
MSC (2010):
Primary 19D10, 19D25, 19D55, 18D20, 55N15
DOI:
https://doi.org/10.1090/tran/6507
Published electronically:
July 10, 2015
MathSciNet review:
3430369
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We extend the $K$-theory of endomorphisms functor from ordinary rings to (stable) $\infty$-categories. We show that $\mathrm {KEnd}(-)$ descends to the category of noncommutative motives, where it is corepresented by the noncommutative motive associated to the tensor algebra $\mathbb {S}[t]$ of the sphere spectrum $\mathbb {S}$. Using this corepresentability result, we classify all the natural transformations of $\mathrm {KEnd}(-)$ in terms of an integer plus a fraction between polynomials with constant term $1$; this solves a problem raised by Almkvist in the seventies. Finally, making use of the multiplicative coalgebra structure of $\mathbb {S}[t]$, we explain how the (rational) Witt vectors can also be recovered from the symmetric monoidal category of noncommutative motives. Along the way we show that the $K_0$-theory of endomorphisms of a connective ring spectrum $R$ equals the $K_0$-theory of endomorphisms of the underlying ordinary ring $\pi _0R$.
- Gert Almkvist, $K$-theory of endomorphisms, J. Algebra 55 (1978), no. 2, 308–340. MR 523461, DOI 10.1016/0021-8693(78)90224-7
- Gert Almkvist, The Grothendieck ring of the category of endomorphisms, J. Algebra 28 (1974), 375–388. MR 432738, DOI 10.1016/0021-8693(74)90047-7
- Benjamin Antieau and David Gepner, Brauer groups and étale cohomology in derived algebraic geometry, Geom. Topol. 18 (2014), no. 2, 1149–1244. MR 3190610, DOI 10.2140/gt.2014.18.1149
- C. Barwick, On the algebraic K-theory of higher categories. Preprint, arXiv:1204.3607.
- C. Barwick, On exact $\i$-categories and the Theorem of the Heart. Preprint, arXiv:1212.5232.
- C. Barwick, On the Q-construction for exact $\i$-categories. Preprint, arXiv:1301.4725.
- Stanislaw Betley and Christian Schlichtkrull, The cyclotomic trace and curves on $K$-theory, Topology 44 (2005), no. 4, 845–874. MR 2136538, DOI 10.1016/j.top.2005.02.004
- Andrew J. Blumberg, David Gepner, and Gonçalo Tabuada, A universal characterization of higher algebraic $K$-theory, Geom. Topol. 17 (2013), no. 2, 733–838. MR 3070515, DOI 10.2140/gt.2013.17.733
- Andrew J. Blumberg, David Gepner, and Gonçalo Tabuada, Uniqueness of the multiplicative cyclotomic trace, Adv. Math. 260 (2014), 191–232. MR 3209352, DOI 10.1016/j.aim.2014.02.004
- Spencer Bloch, Algebraic $K$-theory and crystalline cohomology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 187–268 (1978). MR 488288
- Andrew J. Blumberg and Michael A. Mandell, The localization sequence for the algebraic $K$-theory of topological $K$-theory, Acta Math. 200 (2008), no. 2, 155–179. MR 2413133, DOI 10.1007/s11511-008-0025-4
- Andrew J. Blumberg and Michael A. Mandell, Algebraic $K$-theory and abstract homotopy theory, Adv. Math. 226 (2011), no. 4, 3760–3812. MR 2764905, DOI 10.1016/j.aim.2010.11.002
- Andrew J. Blumberg and Michael A. Mandell, Localization theorems in topological Hochschild homology and topological cyclic homology, Geom. Topol. 16 (2012), no. 2, 1053–1120. MR 2928988, DOI 10.2140/gt.2012.16.1053
- M. V. Bondarko, Weight structures vs. $t$-structures; weight filtrations, spectral sequences, and complexes (for motives and in general), J. K-Theory 6 (2010), no. 3, 387–504. MR 2746283, DOI 10.1017/is010012005jkt083
- W. G. Dwyer and D. M. Kan, Simplicial localizations of categories, J. Pure Appl. Algebra 17 (1980), no. 3, 267–284. MR 579087, DOI 10.1016/0022-4049(80)90049-3
- W. G. Dwyer and D. M. Kan, Calculating simplicial localizations, J. Pure Appl. Algebra 18 (1980), no. 1, 17–35. MR 578563, DOI 10.1016/0022-4049(80)90113-9
- W. G. Dwyer and D. M. Kan, Function complexes for diagrams of simplicial sets, Nederl. Akad. Wetensch. Indag. Math. 45 (1983), no. 2, 139–147. MR 705421, DOI 10.1016/1385-7258(83)90051-3
- William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith, Homotopy limit functors on model categories and homotopical categories, Mathematical Surveys and Monographs, vol. 113, American Mathematical Society, Providence, RI, 2004. MR 2102294, DOI 10.1090/surv/113
- A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole. MR 1417719, DOI 10.1090/surv/047
- T. Fiore and W. Lueck, Waldhausen additivity: Classical and quasicategorical. Preprint, arXiv:1207.6613.
- S. Glasman, Day convolution for $\infty$-categories, Preprint, arXiv:1308.4940.
- Daniel R. Grayson, $K_{2}$ and the $K$-theory of automorphisms, J. Algebra 58 (1979), no. 1, 12–30. MR 535839, DOI 10.1016/0021-8693(79)90185-6
- Daniel R. Grayson, The $K$-theory of endomorphisms, J. Algebra 48 (1977), no. 2, 439–446. MR 480699, DOI 10.1016/0021-8693(77)90320-9
- Daniel R. Grayson, Grothendieck rings and Witt vectors, Comm. Algebra 6 (1978), no. 3, 249–255. MR 484183, DOI 10.1080/00927877808822245
- A. Grothendieck et al., SGA 6.
- Michiel Hazewinkel, Operations in the $K$-theory of endomorphisms, J. Algebra 84 (1983), no. 2, 285–304. MR 723394, DOI 10.1016/0021-8693(83)90080-7
- Michiel Hazewinkel, Witt vectors. I, Handbook of algebra. Vol. 6, Handb. Algebr., vol. 6, Elsevier/North-Holland, Amsterdam, 2009, pp. 319–472. MR 2553661, DOI 10.1016/S1570-7954(08)00207-6
- Lars Hesselholt and Ib Madsen, Cyclic polytopes and the $K$-theory of truncated polynomial algebras, Invent. Math. 130 (1997), no. 1, 73–97. MR 1471886, DOI 10.1007/s002220050178
- Lars Hesselholt, On the $p$-typical curves in Quillen’s $K$-theory, Acta Math. 177 (1996), no. 1, 1–53. MR 1417085, DOI 10.1007/BF02392597
- Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR 1650134
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- J. Lurie, Higher algebra. Preprint, available at www.math.harvard.edu/lurie.
- Ayelet Lindenstrauss and Randy McCarthy, On the algebraic K-theory of formal power series, J. K-Theory 10 (2012), no. 1, 165–189. MR 2990565, DOI 10.1017/is012003003jkt186
- M. A. Mandell and B. Shipley, A telescope comparison lemma for THH, Topology Appl. 117 (2002), no. 2, 161–174. MR 1875908, DOI 10.1016/S0166-8641(00)00121-8
- Amnon Neeman, Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001. MR 1812507, DOI 10.1515/9781400837212
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 85–147. Lecture Notes in Math., Vol. 341. MR 0338129
- S. Schwede, Symmetric spectra. Preprint, http://www.math.uni-bonn.de/ schwede/.
- Stefan Schwede and Brooke Shipley, Stable model categories are categories of modules, Topology 42 (2003), no. 1, 103–153. MR 1928647, DOI 10.1016/S0040-9383(02)00006-X
- Jan Stienstra, Cartier-Dieudonné theory for Chow groups, J. Reine Angew. Math. 355 (1985), 1–66. MR 772483, DOI 10.1515/crll.1985.355.1
- Jan Stienstra, Operations in the higher $K$-theory of endomorphisms, Current trends in algebraic topology, Part 1 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, R.I., 1982, pp. 59–115. MR 686113
- Gonçalo Tabuada, Homotopy theory of spectral categories, Adv. Math. 221 (2009), no. 4, 1122–1143. MR 2518634, DOI 10.1016/j.aim.2009.01.014
- R. W. Thomason and Thomas Trobaugh, Higher algebraic $K$-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435. MR 1106918, DOI 10.1007/978-0-8176-4576-2_{1}0
- Friedhelm Waldhausen, Algebraic $K$-theory of spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 318–419. MR 802796, DOI 10.1007/BFb0074449
- E. Witt. Theorie der quadratischen Formen in beliebigen Körpern. J. Reine Angew. Math. 176 (1937), 31–44.
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 19D10, 19D25, 19D55, 18D20, 55N15
Retrieve articles in all journals with MSC (2010): 19D10, 19D25, 19D55, 18D20, 55N15
Additional Information
Andrew J. Blumberg
Affiliation:
Department of Mathematics, University of Texas, Austin, Texas 78703
MR Author ID:
648837
Email:
blumberg@math.utexas.edu
David Gepner
Affiliation:
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
MR Author ID:
880977
Email:
dgepner@purdue.edu
Gonçalo Tabuada
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 – and – Departamento de Matemática, FCT, UNL, Portugal, Centro de Matemática e Aplicações (CMA), FCT, UNL, Portugal
MR Author ID:
751291
Email:
tabuada@math.mit.edu
Keywords:
$K$-theory of endomorphisms,
noncommutative motives,
stable $\infty$-categories,
Witt vectors
Received by editor(s):
February 20, 2013
Received by editor(s) in revised form:
March 3, 2014, and June 19, 2014
Published electronically:
July 10, 2015
Additional Notes:
The first author was partially supported by the NSF grant DMS-0906105
The third author was partially supported by the National Science Foundation CAREER Award #1350472 and by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the project grant UID/MAT/00297/2013 (Centro de Matemática e Aplicações)
Article copyright:
© Copyright 2015
American Mathematical Society