Compatibility of the Feigin-Frenkel Isomorphism and the Harish-Chandra Isomorphism for jet algebras
HTML articles powered by AMS MathViewer
- by Masoud Kamgarpour PDF
- Trans. Amer. Math. Soc. 368 (2016), 2019-2038 Request permission
Abstract:
Let $\mathfrak {g}$ be a simple finite-dimensional complex Lie algebra with a Cartan subalgebra $\mathfrak {h}$ and Weyl group $W$. Let $\mathfrak {g}_n$ denote the Lie algebra of $n$-jets on $\mathfrak {g}$. A theorem of Raïs and Tauvel and Geoffriau identifies the centre of the category of $\mathfrak {g}_n$-modules with the algebra of functions on the variety of $n$-jets on the affine space $\mathfrak {h}^*/W$. On the other hand, a theorem of Feigin and Frenkel identifies the centre of the category of critical level smooth modules of the corresponding affine Kac-Moody algebra with the algebra of functions on the ind-scheme of opers for the Langlands dual group. We prove that these two isomorphisms are compatible by defining the higher residue of opers with irregular singularities. We also define generalized Verma and Wakimoto modules and relate them by a nontrivial morphism.References
- A. A. Beilinson and V. G. Drinfeld. Quantization of Hitchin’s fibration and Langlands’ program. http://www.math.uchicago.edu/ mitya/langlands/hitchin/BD-hitchin.pdf, 1997.
- A. A. Beilinson and V. G. Drinfeld. Opers. http://arxiv.org/abs/math/0501398, 2005.
- Colin J. Bushnell and Philip C. Kutzko, Semisimple types in $\textrm {GL}_n$, Compositio Math. 119 (1999), no. 1, 53–97. MR 1711578, DOI 10.1023/A:1001773929735
- A. V. Chervov and A. I. Molev, On higher-order Sugawara operators, Int. Math. Res. Not. IMRN 9 (2009), 1612–1635. MR 2500972, DOI 10.1093/imrn/rnn168
- V. G. Drinfel′d and V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 81–180 (Russian). MR 760998
- Michel Duflo, Opérateurs différentiels bi-invariants sur un groupe de Lie, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 265–288 (French, with English summary). MR 444841
- Roman M. Fedorov, Irregular Wakimoto modules and the Casimir connection, Selecta Math. (N.S.) 16 (2010), no. 2, 241–266. MR 2679482, DOI 10.1007/s00029-010-0019-x
- Boris Feigin and Edward Frenkel, Affine Kac-Moody algebras at the critical level and Gel′fand-Dikiĭ algebras, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 197–215. MR 1187549, DOI 10.1142/s0217751x92003781
- B. Feigin, E. Frenkel, and V. Toledano Laredo, Gaudin models with irregular singularities, Adv. Math. 223 (2010), no. 3, 873–948. MR 2565552, DOI 10.1016/j.aim.2009.09.007
- Edward Frenkel and Dennis Gaitsgory, Local geometric Langlands correspondence and affine Kac-Moody algebras, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 69–260. MR 2263193, DOI 10.1007/978-0-8176-4532-8_{3}
- Daniel Friedan, Emil Martinec, and Stephen Shenker, Conformal invariance, supersymmetry and string theory, Nuclear Phys. B 271 (1986), no. 1, 93–165. MR 845945, DOI 10.1016/0550-3213(86)90356-1
- Edward Frenkel, Wakimoto modules, opers and the center at the critical level, Adv. Math. 195 (2005), no. 2, 297–404. MR 2146349, DOI 10.1016/j.aim.2004.08.002
- Edward Frenkel, Langlands correspondence for loop groups, Cambridge Studies in Advanced Mathematics, vol. 103, Cambridge University Press, Cambridge, 2007. MR 2332156
- François Geoffriau, Homomorphisme de Harish-Chandra pour les algèbres de Takiff généralisées, J. Algebra 171 (1995), no. 2, 444–456 (French). MR 1315906, DOI 10.1006/jabr.1995.1021
- M Kamgarpour, Analogies between smooth representation of p-adic groups and affine Kac-Moody algebras, Talk at Oberwolfach session on enveloping algebras, 2012.
- Nicholas M. Katz, On the calculation of some differential Galois groups, Invent. Math. 87 (1987), no. 1, 13–61. MR 862711, DOI 10.1007/BF01389152
- M. Kamgarpour and T. Schedler, Geometrization of principal series of reductive $p$-groups. http://arxiv.org/abs/1011.4529, 2011.
- Masoud Kamgarpour and Travis Schedler, Ramified Satake isomorphisms for strongly parabolic characters, Doc. Math. 18 (2013), 1275–1300. MR 3138847
- Alexander Molev, Casimir elements for certain polynomial current Lie algebras. In Group 21, Physical Applications and Mathematical Aspects of Geometry, Groups, and Algebras, volume 1, pages 172–176. World Scientific, Singapore, 1997.
- A. I. Molev, Feigin-Frenkel center in types $B$, $C$ and $D$, Invent. Math. 191 (2013), no. 1, 1–34. MR 3004777, DOI 10.1007/s00222-012-0390-7
- Alan Roche, Types and Hecke algebras for principal series representations of split reductive $p$-adic groups, Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 3, 361–413 (English, with English and French summaries). MR 1621409, DOI 10.1016/S0012-9593(98)80139-0
- Mustapha Raïs and Patrice Tauvel, Indice et polynômes invariants pour certaines algèbres de Lie, J. Reine Angew. Math. 425 (1992), 123–140 (French). MR 1151316
- S. J. Takiff, Invariant polynomials on Lie algebras of inhomogeneous unitary and special orthogonal groups, Trans. Amer. Math. Soc. 170 (1972), 221–230. MR 304564, DOI 10.1090/S0002-9947-1972-0304564-5
- Benjamin J. Wilson, Highest-weight theory for truncated current Lie algebras, J. Algebra 336 (2011), 1–27. MR 2802528, DOI 10.1016/j.jalgebra.2011.04.015
Additional Information
- Masoud Kamgarpour
- Affiliation: School of Mathematics and Physics, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Email: masoud@uq.edu.au
- Received by editor(s): August 21, 2013
- Received by editor(s) in revised form: February 7, 2014
- Published electronically: October 3, 2014
- Additional Notes: The author was supported by the Australian Research Council Discovery Early Career Research Award
- © Copyright 2014 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 2019-2038
- MSC (2010): Primary 17B67, 17B69, 22E50, 20G25
- DOI: https://doi.org/10.1090/S0002-9947-2014-06419-2
- MathSciNet review: 3449232