Non-harmonic cones are sets of injectivity for the twisted spherical means on $\mathbb {C}^n$
HTML articles powered by AMS MathViewer
- by R. K. Srivastava PDF
- Trans. Amer. Math. Soc. 368 (2016), 1941-1957 Request permission
Abstract:
In this article, we prove that a complex cone is a set of injectivity for the twisted spherical means for the class of all continuous functions on $\mathbb C^n$ as long as it does not completely lay on the level surface of any bi-graded homogeneous harmonic polynomial on $\mathbb C^n.$ Further, we produce examples of such level surfaces.References
- D. H. Armitage, Cones on which entire harmonic functions can vanish, Proc. Roy. Irish Acad. Sect. A 92 (1992), no. 1, 107–110. MR 1173388
- Mark Agranovsky, Carlos Berenstein, and Peter Kuchment, Approximation by spherical waves in $L^p$-spaces, J. Geom. Anal. 6 (1996), no. 3, 365–383 (1997). MR 1471897, DOI 10.1007/BF02921656
- Gaik Ambartsoumian and Peter Kuchment, On the injectivity of the circular Radon transform, Inverse Problems 21 (2005), no. 2, 473–485. MR 2146272, DOI 10.1088/0266-5611/21/2/004
- M. L. Agranovsky and E. K. Narayanan, $L^p$-integrability, supports of Fourier transforms and uniqueness for convolution equations, J. Fourier Anal. Appl. 10 (2004), no. 3, 315–324. MR 2066426, DOI 10.1007/s00041-004-0986-4
- M. L. Agranovsky and E. K. Narayanan, A local two radii theorem for the twisted spherical means on $\Bbb C^n$, Complex analysis and dynamical systems II, Contemp. Math., vol. 382, Amer. Math. Soc., Providence, RI, 2005, pp. 13–27. MR 2175874, DOI 10.1090/conm/382/07044
- M. L. Agranovskiĭ and E. K. Narayanan, Injectivity of the spherical mean operator on the conical manifolds of spheres, Sibirsk. Mat. Zh. 45 (2004), no. 4, 723–733 (Russian, with Russian summary); English transl., Siberian Math. J. 45 (2004), no. 4, 597–605. MR 2091643, DOI 10.1023/B:SIMJ.0000035826.91332.06
- Mark L. Agranovsky and Eric Todd Quinto, Injectivity sets for the Radon transform over circles and complete systems of radial functions, J. Funct. Anal. 139 (1996), no. 2, 383–414. MR 1402770, DOI 10.1006/jfan.1996.0090
- Mark L. Agranovsky and Rama Rawat, Injectivity sets for spherical means on the Heisenberg group, J. Fourier Anal. Appl. 5 (1999), no. 4, 363–372. MR 1700090, DOI 10.1007/BF01259377
- M. L. Agranovsky, V. V. Volchkov, and L. A. Zalcman, Conical uniqueness sets for the spherical Radon transform, Bull. London Math. Soc. 31 (1999), no. 2, 231–236. MR 1664137, DOI 10.1112/S0024609398005396
- Charles F. Dunkl, Boundary value problems for harmonic functions on the Heisenberg group, Canad. J. Math. 38 (1986), no. 2, 478–512. MR 833580, DOI 10.4153/CJM-1986-024-9
- Daryl Geller, Spherical harmonics, the Weyl transform and the Fourier transform on the Heisenberg group, Canad. J. Math. 36 (1984), no. 4, 615–684. MR 756538, DOI 10.4153/CJM-1984-039-0
- Peter C. Greiner, Spherical harmonics on the Heisenberg group, Canad. Math. Bull. 23 (1980), no. 4, 383–396. MR 602590, DOI 10.4153/CMB-1980-057-9
- E. K. Narayanan, R. Rawat, and S. K. Ray, Approximation by $K$-finite functions in $L^p$ spaces, Israel J. Math. 161 (2007), 187–207. MR 2350162, DOI 10.1007/s11856-007-0078-7
- E. K. Narayanan and S. Thangavelu, Injectivity sets for spherical means on the Heisenberg group, J. Math. Anal. Appl. 263 (2001), no. 2, 565–579. MR 1866065, DOI 10.1006/jmaa.2001.7636
- Vishwambhar Pati and Alladi Sitaram, Some questions on integral geometry on Riemannian manifolds, Sankhyā Ser. A 62 (2000), no. 3, 419–424. Ergodic theory and harmonic analysis (Mumbai, 1999). MR 1803467
- Rama Rawat and A. Sitaram, Injectivity sets for spherical means on $\textbf {R}^n$ and on symmetric spaces, J. Fourier Anal. Appl. 6 (2000), no. 3, 343–348. MR 1755148, DOI 10.1007/BF02511160
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- Rajesh K. Srivastava, Sets of injectivity for weighted twisted spherical means and support theorems, J. Fourier Anal. Appl. 18 (2012), no. 3, 592–608. MR 2921086, DOI 10.1007/s00041-011-9212-3
- Rajesh K. Srivastava, Coxeter system of lines and planes are sets of injectivity for the twisted spherical means, J. Funct. Anal. 267 (2014), no. 2, 352–383. MR 3210032, DOI 10.1016/j.jfa.2014.03.009
- Rajesh K. Srivastava, Real analytic expansion of spectral projections and extension of the Hecke-Bochner identity, Israel J. Math. 200 (2014), no. 1, 171–192. MR 3219575, DOI 10.1007/s11856-014-1041-z
- G. Sajith and S. Thangavelu, On the injectivity of twisted spherical means on ${\Bbb C}^n$, Israel J. Math. 122 (2001), 79–92. MR 1826492, DOI 10.1007/BF02809892
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- Sundaram Thangavelu, An introduction to the uncertainty principle, Progress in Mathematics, vol. 217, Birkhäuser Boston, Inc., Boston, MA, 2004. Hardy’s theorem on Lie groups; With a foreword by Gerald B. Folland. MR 2008480, DOI 10.1007/978-0-8176-8164-7
- V. V. Volchkov, Injectivity sets for the Radon transform on spheres, Izv. Ross. Akad. Nauk Ser. Mat. 63 (1999), no. 3, 63–76 (Russian, with Russian summary); English transl., Izv. Math. 63 (1999), no. 3, 481–493. MR 1712132, DOI 10.1070/im1999v063n03ABEH000248
- V. V. Volchkov, Integral geometry and convolution equations, Kluwer Academic Publishers, Dordrecht, 2003. MR 2016409, DOI 10.1007/978-94-010-0023-9
- Valery V. Volchkov and Vitaly V. Volchkov, Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2009. MR 2527108, DOI 10.1007/978-1-84882-533-8
- V. V. Volchkov and Vit. V. Volchkov, Functions with vanishing integrals over spheres centered on cones, Dokl. Akad. Nauk 438 (2011), no. 1, 22–25 (Russian); English transl., Dokl. Math. 83 (2011), no. 3, 298–301. MR 2857371, DOI 10.1134/S1064562411030094
- Valery V. Volchkov and Vitaly V. Volchkov, Offbeat integral geometry on symmetric spaces, Birkhäuser/Springer Basel AG, Basel, 2013. MR 3024377, DOI 10.1007/978-3-0348-0572-8
- V. V. Volchkov and Vit. V. Volchkov, Behavior at infinity of solutions of a twisted convolution equation, Izv. Ross. Akad. Nauk Ser. Mat. 76 (2012), no. 1, 85–100 (Russian, with Russian summary); English transl., Izv. Math. 76 (2012), no. 1, 79–93. MR 2951816, DOI 10.1070/IM2012v076n01ABEH002575
Additional Information
- R. K. Srivastava
- Affiliation: Department of Mathematics, Indian Institute of Technology, Guwahati, India 781039
- Email: rksri@iitg.ernet.in
- Received by editor(s): December 14, 2013
- Received by editor(s) in revised form: January 11, 2014
- Published electronically: June 18, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 1941-1957
- MSC (2010): Primary 43A85; Secondary 44A35
- DOI: https://doi.org/10.1090/tran/6488
- MathSciNet review: 3449229