Geometric spectral theory for compact operators
HTML articles powered by AMS MathViewer
- by Isaak Chagouel, Michael Stessin and Kehe Zhu PDF
- Trans. Amer. Math. Soc. 368 (2016), 1559-1582 Request permission
Abstract:
For an $n$-tuple $\mathbb {A}=(A_1,\cdots ,A_n)$ of compact operators we define the joint point spectrum of $\mathbb {A}$ to be the set \[ \sigma _p(\mathbb {A})=\{(z_1,\cdots ,z_n)\in \mathbb {C}^n:\ker (I+z_1A_1+\cdots +z_nA_n)\not =(0)\}.\] We prove in several situations that the operators in $\mathbb {A}$ pairwise commute if and only if $\sigma _p(\mathbb {A})$ consists of countably many, locally finite, hyperplanes in $\mathbb C^n$. In particular, we show that if $\mathbb {A}$ is an $n$-tuple of $N\times N$ normal matrices, then these matrices pairwise commute if and only if the polynomial \[ p_{\mathbb {A}}(z_1,\cdots ,z_n)=\det (I+z_1A_1+\cdots +z_nA_n)\] is completely reducible, namely, \[ p_{\mathbb {A}}(z_1,\cdots ,z_n)=\prod _{k=1}^N(1+a_{k1}z_1+\cdots +a_{kn}z_n)\] can be factored into the product of linear polynomials.References
- E. M. Chirka, Complex analytic sets, Mathematics and its Applications (Soviet Series), vol. 46, Kluwer Academic Publishers Group, Dordrecht, 1989. Translated from the Russian by R. A. M. Hoksbergen. MR 1111477, DOI 10.1007/978-94-009-2366-9
- John B. Conway and Bernard B. Morrel, Operators that are points of spectral continuity, Integral Equations Operator Theory 2 (1979), no. 2, 174–198. MR 543882, DOI 10.1007/BF01682733
- Ronald G. Douglas, Banach algebra techniques in operator theory, 2nd ed., Graduate Texts in Mathematics, vol. 179, Springer-Verlag, New York, 1998. MR 1634900, DOI 10.1007/978-1-4612-1656-8
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Jörg Eschmeier and Mihai Putinar, Spectral decompositions and analytic sheaves, London Mathematical Society Monographs. New Series, vol. 10, The Clarendon Press, Oxford University Press, New York, 1996. Oxford Science Publications. MR 1420618
- Bent Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 35–40. MR 32944, DOI 10.1073/pnas.36.1.35
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR 0246142
- P. Gonzalez-Vera and M. I. Stessin, Joint spectra of Toeplitz operators and optimal recovery of analytic functions, Constr. Approx. 36 (2012), no. 1, 53–82. MR 2926305, DOI 10.1007/s00365-012-9169-8
- Alan McIntosh and Alan Pryde, A functional calculus for several commuting operators, Indiana Univ. Math. J. 36 (1987), no. 2, 421–439. MR 891783, DOI 10.1512/iumj.1987.36.36024
- Alan McIntosh and Alan Pryde, The solution of systems of operator equations using Clifford algebras, Miniconference on linear analysis and function spaces (Canberra, 1984) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 9, Austral. Nat. Univ., Canberra, 1985, pp. 212–222. MR 825528
- K. Y. Osipenko and M. I. Stessin, Hadamard and Schwarz type theorems and optimal recovery in spaces of analytic functions, Constr. Approx. 31 (2010), no. 1, 37–67. MR 2575809, DOI 10.1007/s00365-009-9043-5
- A. J. Pryde, A noncommutative joint spectral theory, Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 20, Austral. Nat. Univ., Canberra, 1988, pp. 153–161. MR 1009602
- A. J. Pryde, Inequalities for exponentials in Banach algebras, Studia Math. 100 (1991), no. 1, 87–94. MR 1130140, DOI 10.4064/sm-100-1-87-94
- Alan J. Pryde and Andrzej Sołtysiak, On joint spectra of noncommuting normal operators, Bull. Austral. Math. Soc. 48 (1993), no. 1, 163–170. MR 1227446, DOI 10.1017/S0004972700015562
- Werner J. Ricker, The Weyl calculus and commutativity for systems of selfadjoint matrices, Arch. Math. (Basel) 61 (1993), no. 2, 173–176. MR 1230947, DOI 10.1007/BF01207466
- W. J. Ricker, Commutativity of $(2\times 2)$ selfadjoint matrices, Bull. Austral. Math. Soc. 48 (1993), no. 2, 321–323. MR 1238805, DOI 10.1017/S0004972700015732
- A. Sołtysiak, On joint spectra of non-commuting hyponormal operators, Bull. Austral. Math. Soc. 64 (2001), no. 1, 131–136. MR 1848085, DOI 10.1017/S0004972700019742
- M. Stessin, R. Yang, and K. Zhu, Analyticity of a joint spectrum and a multivariable analytic Fredhom theorem, New York J. Math. 17A (2011), 39–44. MR 2782727
- Joseph L. Taylor, A joint spectrum for several commuting operators, J. Functional Analysis 6 (1970), 172–191. MR 0268706, DOI 10.1016/0022-1236(70)90055-8
- Rongwei Yang, Projective spectrum in Banach algebras, J. Topol. Anal. 1 (2009), no. 3, 289–306. MR 2574027, DOI 10.1142/S1793525309000126
- Kehe Zhu, Operator theory in function spaces, 2nd ed., Mathematical Surveys and Monographs, vol. 138, American Mathematical Society, Providence, RI, 2007. MR 2311536, DOI 10.1090/surv/138
Additional Information
- Isaak Chagouel
- Affiliation: Department of Mathematics and Statistics, State University of New York, Albany, New York 12222
- Email: ichagouel@albany.edu
- Michael Stessin
- Affiliation: Department of Mathematics and Statistics, State University of New York, Albany, New York 12222
- Email: mstessin@albany.edu
- Kehe Zhu
- Affiliation: Department of Mathematics and Statistics, State University of New York, Albany, New York 12222
- MR Author ID: 187055
- Email: kzhu@albany.edu
- Received by editor(s): December 18, 2013
- Published electronically: June 15, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 1559-1582
- MSC (2010): Primary 47A13, 47A10
- DOI: https://doi.org/10.1090/tran/6588
- MathSciNet review: 3449218