Davies type estimate and the heat kernel bound under the Ricci flow
HTML articles powered by AMS MathViewer
- by Meng Zhu PDF
- Trans. Amer. Math. Soc. 368 (2016), 1663-1680 Request permission
Abstract:
We prove a Davies type double integral estimate for the heat kernel $H(y,t;x,l)$ under the Ricci flow. As a result, we give an affirmative answer to a question proposed by Chow et al. Moreover, we apply the Davies type estimate to provide a new proof of the Gaussian upper and lower bounds of $H(y,t;x,l)$ which were first shown in 2011 by Chan, Tam, and Yu.References
- D. G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc. 73 (1967), 890–896. MR 217444, DOI 10.1090/S0002-9904-1967-11830-5
- Xiaodong Cao and Richard S. Hamilton, Differential Harnack estimates for time-dependent heat equations with potentials, Geom. Funct. Anal. 19 (2009), no. 4, 989–1000. MR 2570311, DOI 10.1007/s00039-009-0024-4
- Xiaodong Cao and Qi S. Zhang, The conjugate heat equation and ancient solutions of the Ricci flow, Adv. Math. 228 (2011), no. 5, 2891–2919. MR 2838064, DOI 10.1016/j.aim.2011.07.022
- E. A. Carlen, S. Kusuoka, and D. W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, suppl., 245–287 (English, with French summary). MR 898496
- Gilles Carron, Inégalités isopérimétriques de Faber-Krahn et conséquences, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992) Sémin. Congr., vol. 1, Soc. Math. France, Paris, 1996, pp. 205–232 (French, with English and French summaries). MR 1427759
- Albert Chau, Luen-Fai Tam, and Chengjie Yu, Pseudolocality for the Ricci flow and applications, Canad. J. Math. 63 (2011), no. 1, 55–85. MR 2779131, DOI 10.4153/CJM-2010-076-2
- Siu Yuen Cheng, Peter Li, and Shing Tung Yau, On the upper estimate of the heat kernel of a complete Riemannian manifold, Amer. J. Math. 103 (1981), no. 5, 1021–1063. MR 630777, DOI 10.2307/2374257
- Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: techniques and applications. Part III. Geometric-analytic aspects, Mathematical Surveys and Monographs, vol. 163, American Mathematical Society, Providence, RI, 2010. MR 2604955, DOI 10.1090/surv/163
- E. B. Davies, Explicit constants for Gaussian upper bounds on heat kernels, Amer. J. Math. 109 (1987), no. 2, 319–333. MR 882426, DOI 10.2307/2374577
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239, DOI 10.1017/CBO9780511566158
- E. B. Davies, Heat kernel bounds, conservation of probability and the Feller property, J. Anal. Math. 58 (1992), 99–119. Festschrift on the occasion of the 70th birthday of Shmuel Agmon. MR 1226938, DOI 10.1007/BF02790359
- Alexander Grigor′yan, Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana 10 (1994), no. 2, 395–452. MR 1286481, DOI 10.4171/RMI/157
- Alexander Grigor′yan, Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Differential Geom. 45 (1997), no. 1, 33–52. MR 1443330
- Christine M. Guenther, The fundamental solution on manifolds with time-dependent metrics, J. Geom. Anal. 12 (2002), no. 3, 425–436. MR 1901749, DOI 10.1007/BF02922048
- Emmanuel Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, vol. 5, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. MR 1688256
- Hans-Joachim Hein and Aaron Naber, New logarithmic Sobolev inequalities and an $\epsilon$-regularity theorem for the Ricci flow, Comm. Pure Appl. Math. 67 (2014), no. 9, 1543–1561. MR 3245102, DOI 10.1002/cpa.21474
- Peter Li, Luen-Fai Tam, and Jiaping Wang, Sharp bounds for the Green’s function and the heat kernel, Math. Res. Lett. 4 (1997), no. 4, 589–602. MR 1470428, DOI 10.4310/MRL.1997.v4.n4.a13
- Peter Li and Jiaping Wang, Mean value inequalities, Indiana Univ. Math. J. 48 (1999), no. 4, 1257–1283. MR 1757075, DOI 10.1512/iumj.1999.48.1714
- Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201. MR 834612, DOI 10.1007/BF02399203
- J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931–954. MR 100158, DOI 10.2307/2372841
- Lei Ni, Ricci flow and nonnegativity of sectional curvature, Math. Res. Lett. 11 (2004), no. 5-6, 883–904. MR 2106247, DOI 10.4310/MRL.2004.v11.n6.a12
- N. Th. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal. 63 (1985), no. 2, 240–260. MR 803094, DOI 10.1016/0022-1236(85)90087-4
- Guoyi Xu, An equation linking $\mathcal {W}$-entropy with reduced volume, arXiv:1211.6354, to appear in J. Reine Angew. Math.
- Qi S. Zhang, Heat kernel bounds, ancient $\kappa$ solutions and the Poincaré conjecture, J. Funct. Anal. 258 (2010), no. 4, 1225–1246. MR 2565838, DOI 10.1016/j.jfa.2009.11.002
- Qi S. Zhang, Sobolev inequalities, heat kernels under Ricci flow, and the Poincaré conjecture, CRC Press, Boca Raton, FL, 2011. MR 2676347
- Qi S. Zhang, Some gradient estimates for the heat equation on domains and for an equation by Perelman, Int. Math. Res. Not. , posted on (2006), Art. ID 92314, 39. MR 2250008, DOI 10.1155/IMRN/2006/92314
Additional Information
- Meng Zhu
- Affiliation: Department of Mathematics, East China Normal University, Shanghai 200062, People’s Republic of China – and – Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, People’s Republic of China
- Address at time of publication: Department of Mathematics, University of California, Riverside, California 92521
- MR Author ID: 888985
- Email: mzhu@math.ecnu.edu.cn, mengzhu@ucr.edu
- Received by editor(s): December 30, 2013
- Published electronically: May 20, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 1663-1680
- MSC (2010): Primary 53C44, 58J35
- DOI: https://doi.org/10.1090/tran/6600
- MathSciNet review: 3449222