On random Hermite series
HTML articles powered by AMS MathViewer
- by Rafik Imekraz, Didier Robert and Laurent Thomann PDF
- Trans. Amer. Math. Soc. 368 (2016), 2763-2792 Request permission
Abstract:
We study integrability and continuity properties of random series of Hermite functions. We get optimal results which are analogues to classical results concerning Fourier series, like the Paley-Zygmund or the Salem-Zygmund theorems. We also consider the case of series of radial Hermite functions, which are not so well-behaved. In this context, we prove some$L^p$ bounds of radial Hermite functions, which are optimal when $p$ is large.References
- Richard Askey and Stephen Wainger, Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math. 87 (1965), 695–708. MR 182834, DOI 10.2307/2373069
- Antoine Ayache and Nikolay Tzvetkov, $L^p$ properties for Gaussian random series, Trans. Amer. Math. Soc. 360 (2008), no. 8, 4425–4439. MR 2395179, DOI 10.1090/S0002-9947-08-04456-5
- Nicolas Burq and Gilles Lebeau, Injections de Sobolev probabilistes et applications, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 6, 917–962 (French, with English and French summaries). MR 3134684, DOI 10.24033/asens.2206
- Yu Deng, Two-dimensional nonlinear Schrödinger equation with random radial data, Anal. PDE 5 (2012), no. 5, 913–960. MR 3022846, DOI 10.2140/apde.2012.5.913
- Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. MR 1342297, DOI 10.1017/CBO9780511526138
- A. Erdélyi, Asymptotic forms for Laguerre polynomials, J. Indian Math. Soc. (N.S.) 24 (1960), 235–250 (1961). MR 123751
- Sophie Grivaux, Almost sure convergence of some random series, C. R. Math. Acad. Sci. Paris 348 (2010), no. 3-4, 155–159 (English, with English and French summaries). MR 2600068, DOI 10.1016/j.crma.2010.01.020
- J. Hoffmann-Jørgensen, Probability in Banach space, École d’Été de Probabilités de Saint-Flour, VI-1976, Lecture Notes in Math., Vol. 598, Springer-Verlag, Berlin, 1977, pp. 1–186. MR 0461610
- Jean-Pierre Kahane, Some random series of functions, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge, 1985. MR 833073
- Herbert Koch and Daniel Tataru, $L^p$ eigenfunction bounds for the Hermite operator, Duke Math. J. 128 (2005), no. 2, 369–392. MR 2140267, DOI 10.1215/S0012-7094-04-12825-8
- Daniel Li and Hervé Queffélec, Introduction à l’étude des espaces de Banach, Cours Spécialisés [Specialized Courses], vol. 12, Société Mathématique de France, Paris, 2004 (French). Analyse et probabilités. [Analysis and probability theory]. MR 2124356
- Michael B. Marcus and Gilles Pisier, Random Fourier series with applications to harmonic analysis, Annals of Mathematics Studies, No. 101, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. MR 630532
- Bernard Maurey and Gilles Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), no. 1, 45–90 (French). MR 443015, DOI 10.4064/sm-58-1-45-90
- Benjamin Muckenhoupt, Mean convergence of Hermite and Laguerre series. I, II, Trans. Amer. Math. Soc. 147 (1970), 419-431; ibid. 147 (1970), 433–460. MR 0256051, DOI 10.1090/S0002-9947-1970-0256051-9
- Aurélien Poiret, Didier Robert, and Laurent Thomann, Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator, Anal. PDE 7 (2014), no. 4, 997–1026. MR 3254351, DOI 10.2140/apde.2014.7.997
- Aurélien Poiret, Didier Robert, and Laurent Thomann, Random-weighted Sobolev inequalities on $\Bbb {R}^d$ and application to Hermite functions, Ann. Henri Poincaré 16 (2015), no. 2, 651–689. MR 3302609, DOI 10.1007/s00023-014-0317-5
- Didier Robert and Laurent Thomann, Random weighted Sobolev inequalities and application to quantum ergodicity, Comm. Math. Phys. 335 (2015), no. 3, 1181–1209. MR 3320309, DOI 10.1007/s00220-015-2335-7
- Bernard Shiffman and Steve Zelditch, Random polynomials of high degree and Levy concentration of measure, Asian J. Math. 7 (2003), no. 4, 627–646. MR 2074895, DOI 10.4310/AJM.2003.v7.n4.a11
- Gabor Szegö, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, New York, 1939. MR 0000077
- Sundaram Thangavelu, Lectures on Hermite and Laguerre expansions, Mathematical Notes, vol. 42, Princeton University Press, Princeton, NJ, 1993. With a preface by Robert S. Strichartz. MR 1215939
- N. Tzvetkov, Riemannian analogue of a Paley-Zygmund theorem, Séminaire EDP X, 2008-2009, Exposé no. XV.
- David Williams, Probability with martingales, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1991. MR 1155402, DOI 10.1017/CBO9780511813658
- Kenji Yajima and Guoping Zhang, Local smoothing property and Strichartz inequality for Schrödinger equations with potentials superquadratic at infinity, J. Differential Equations 202 (2004), no. 1, 81–110. MR 2060533, DOI 10.1016/j.jde.2004.03.027
Additional Information
- Rafik Imekraz
- Affiliation: Institut de Mathématiques de Bordeaux, UMR 5251 du CNRS, Université de Bordeaux 1, 351, cours de la Libération F33405 Talence Cedex, France
- Email: rafik.imekraz@math.u-bordeaux1.fr
- Didier Robert
- Affiliation: Laboratoire de Mathématiques J. Leray, UMR 6629 du CNRS, Université de Nantes, 2, rue de la Houssinière, 44322 Nantes Cedex 03, France
- Email: didier.robert@univ-nantes.fr
- Laurent Thomann
- Affiliation: Laboratoire de Mathématiques J. Leray, UMR 6629 du CNRS, Université de Nantes, 2, rue de la Houssinière, 44322 Nantes Cedex 03, France
- MR Author ID: 794415
- Email: laurent.thomann@univ-nantes.fr
- Received by editor(s): March 20, 2014
- Published electronically: April 8, 2015
- Additional Notes: The second author was partly supported by the grant “NOSEVOL” ANR-2011-BS01019 01
The third author was partly supported by the grant “HANDDY” ANR-10-JCJC 0109, and by the grant “ANAÉ” ANR-13-BS01-0010-03 - © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 2763-2792
- MSC (2010): Primary 60G50
- DOI: https://doi.org/10.1090/tran/6607
- MathSciNet review: 3449257