Semigroup -algebras of
-semigroups
Author:
Xin Li
Journal:
Trans. Amer. Math. Soc. 368 (2016), 4417-4437
MSC (2010):
Primary 46L05; Secondary 11R04, 13F05
DOI:
https://doi.org/10.1090/tran/6469
Published electronically:
September 15, 2015
MathSciNet review:
3453375
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We study semigroup -algebras of
-semigroups over integral domains. The goal is to generalize several results about
-algebras of
-semigroups over rings of algebraic integers. We prove results concerning K-theory and structural properties like the ideal structure or pure infiniteness. Our methods allow us to treat
-semigroups over a large class of integral domains containing all noetherian, integrally closed domains and coordinate rings of affine varieties over infinite fields.
- [A-M] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, Reading, Massachusetts, 1969.
- [Bass] Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28. MR 153708, https://doi.org/10.1007/BF01112819
- [Bour1] N. Bourbaki, Algèbre commutative. Chapitres 1 à 4. Éléments de mathématique. Réimpression inchangée de l'édition originale de 1985, Springer-Verlag, Berlin Heidelberg, 2006.
- [Bour2] N. Bourbaki, Algèbre commutative. Chapitres 5 à 7. Éléments de mathématique. Réimpression inchangée de l'édition originale de 1975, Springer-Verlag, Berlin Heidelberg, 2006.
- [B-Q] Philip Quartararo Jr. and H. S. Butts, Finite unions of ideals and modules, Proc. Amer. Math. Soc. 52 (1975), 91–96. MR 382249, https://doi.org/10.1090/S0002-9939-1975-0382249-5
- [C-D-L] Joachim Cuntz, Christopher Deninger, and Marcelo Laca, 𝐶*-algebras of Toeplitz type associated with algebraic number fields, Math. Ann. 355 (2013), no. 4, 1383–1423. MR 3037019, https://doi.org/10.1007/s00208-012-0826-9
- [C-E-L1] Joachim Cuntz, Siegfried Echterhoff, and Xin Li, On the K-theory of the C*-algebra generated by the left regular representation of an Ore semigroup, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 3, 645–687. MR 3323201, https://doi.org/10.4171/JEMS/513
- [C-E-L2] Joachim Cuntz, Siegfried Echterhoff, and Xin Li, On the 𝐾-theory of crossed products by automorphic semigroup actions, Q. J. Math. 64 (2013), no. 3, 747–784. MR 3094498, https://doi.org/10.1093/qmath/hat021
- [E-L] Siegfried Echterhoff and Marcelo Laca, The primitive ideal space of the 𝐶*-algebra of the affine semigroup of algebraic integers, Math. Proc. Cambridge Philos. Soc. 154 (2013), no. 1, 119–126. MR 3002587, https://doi.org/10.1017/S0305004112000485
- [Fos] Robert M. Fossum, The divisor class group of a Krull domain, Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74. MR 0382254
- [Gott] Christian Gottlieb, On finite unions of ideals and cosets, Comm. Algebra 22 (1994), no. 8, 3087–3097. MR 1272374, https://doi.org/10.1080/00927879408825014
- [Hein] William Heinzer, Integral domains in which each non-zero ideal is divisorial, Mathematika 15 (1968), 164–170. MR 236161, https://doi.org/10.1112/S0025579300002527
- [H-K] Nigel Higson and Gennadi Kasparov, 𝐸-theory and 𝐾𝐾-theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001), no. 1, 23–74. MR 1821144, https://doi.org/10.1007/s002220000118
- [K-R1] Eberhard Kirchberg and Mikael Rørdam, Non-simple purely infinite 𝐶*-algebras, Amer. J. Math. 122 (2000), no. 3, 637–666. MR 1759891
- [K-R2] Eberhard Kirchberg and Mikael Rørdam, Infinite non-simple 𝐶*-algebras: absorbing the Cuntz algebras 𝒪_{∞}, Adv. Math. 167 (2002), no. 2, 195–264. MR 1906257, https://doi.org/10.1006/aima.2001.2041
- [La-Ne] Marcelo Laca and Sergey Neshveyev, Type 𝐼𝐼𝐼₁ equilibrium states of the Toeplitz algebra of the affine semigroup over the natural numbers, J. Funct. Anal. 261 (2011), no. 1, 169–187. MR 2785897, https://doi.org/10.1016/j.jfa.2011.03.009
- [L-R] Marcelo Laca and Iain Raeburn, Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers, Adv. Math. 225 (2010), no. 2, 643–688. MR 2671177, https://doi.org/10.1016/j.aim.2010.03.007
- [Li1] Xin Li, Ring 𝐶*-algebras, Math. Ann. 348 (2010), no. 4, 859–898. MR 2721644, https://doi.org/10.1007/s00208-010-0502-x
- [Li2] Xin Li, Semigroup 𝐶*-algebras and amenability of semigroups, J. Funct. Anal. 262 (2012), no. 10, 4302–4340. MR 2900468, https://doi.org/10.1016/j.jfa.2012.02.020
- [Li3] Xin Li, Nuclearity of semigroup 𝐶*-algebras and the connection to amenability, Adv. Math. 244 (2013), 626–662. MR 3077884, https://doi.org/10.1016/j.aim.2013.05.016
- [Li4] Xin Li, On K-theoretic invariants of semigroup 𝐶*-algebras attached to number fields, Adv. Math. 264 (2014), 371–395. MR 3250289, https://doi.org/10.1016/j.aim.2014.07.014
- [Li-No]
X. Li and M. D. Norling, Independent resolutions for totally disconnected dynamical systems II:
-algebraic case, arXiv:1404.6169, accepted for publication in J. Optim. Theory.
- [Nor] Magnus Dahler Norling, Inverse semigroup 𝐶*-algebras associated with left cancellative semigroups, Proc. Edinb. Math. Soc. (2) 57 (2014), no. 2, 533–564. MR 3200323, https://doi.org/10.1017/S0013091513000540
- [P-R] Cornel Pasnicu and Mikael Rørdam, Purely infinite 𝐶*-algebras of real rank zero, J. Reine Angew. Math. 613 (2007), 51–73. MR 2377129, https://doi.org/10.1515/CRELLE.2007.091
- [Rør] M. Rørdam, Classification of nuclear, simple 𝐶*-algebras, Classification of nuclear 𝐶*-algebras. Entropy in operator algebras, Encyclopaedia Math. Sci., vol. 126, Springer, Berlin, 2002, pp. 1–145. MR 1878882, https://doi.org/10.1007/978-3-662-04825-2_1
- [Ste] Peter Stevenhagen, The arithmetic of number rings, Algorithmic number theory: lattices, number fields, curves and cryptography, Math. Sci. Res. Inst. Publ., vol. 44, Cambridge Univ. Press, Cambridge, 2008, pp. 209–266. MR 2467548
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46L05, 11R04, 13F05
Retrieve articles in all journals with MSC (2010): 46L05, 11R04, 13F05
Additional Information
Xin Li
Affiliation:
School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
Email:
xin.li@qmul.ac.uk
DOI:
https://doi.org/10.1090/tran/6469
Received by editor(s):
December 2, 2013
Received by editor(s) in revised form:
April 29, 2014
Published electronically:
September 15, 2015
Additional Notes:
This research was supported by the ERC through AdG 267079
Article copyright:
© Copyright 2015
American Mathematical Society