Semigroup $C^*$-algebras of $ax+b$-semigroups
HTML articles powered by AMS MathViewer
- by Xin Li PDF
- Trans. Amer. Math. Soc. 368 (2016), 4417-4437 Request permission
Abstract:
We study semigroup $C^*$-algebras of $ax+b$-semigroups over integral domains. The goal is to generalize several results about $C^*$-algebras of $ax+b$-semigroups over rings of algebraic integers. We prove results concerning K-theory and structural properties like the ideal structure or pure infiniteness. Our methods allow us to treat $ax+b$-semigroups over a large class of integral domains containing all noetherian, integrally closed domains and coordinate rings of affine varieties over infinite fields.References
- M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, Reading, Massachusetts, 1969.
- Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28. MR 153708, DOI 10.1007/BF01112819
- N. Bourbaki, Algèbre commutative. Chapitres 1 à 4. Éléments de mathématique. Réimpression inchangée de l’édition originale de 1985, Springer-Verlag, Berlin Heidelberg, 2006.
- N. Bourbaki, Algèbre commutative. Chapitres 5 à 7. Éléments de mathématique. Réimpression inchangée de l’édition originale de 1975, Springer-Verlag, Berlin Heidelberg, 2006.
- Philip Quartararo Jr. and H. S. Butts, Finite unions of ideals and modules, Proc. Amer. Math. Soc. 52 (1975), 91–96. MR 382249, DOI 10.1090/S0002-9939-1975-0382249-5
- Joachim Cuntz, Christopher Deninger, and Marcelo Laca, $C^*$-algebras of Toeplitz type associated with algebraic number fields, Math. Ann. 355 (2013), no. 4, 1383–1423. MR 3037019, DOI 10.1007/s00208-012-0826-9
- Joachim Cuntz, Siegfried Echterhoff, and Xin Li, On the K-theory of the C*-algebra generated by the left regular representation of an Ore semigroup, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 3, 645–687. MR 3323201, DOI 10.4171/JEMS/513
- Joachim Cuntz, Siegfried Echterhoff, and Xin Li, On the $K$-theory of crossed products by automorphic semigroup actions, Q. J. Math. 64 (2013), no. 3, 747–784. MR 3094498, DOI 10.1093/qmath/hat021
- Siegfried Echterhoff and Marcelo Laca, The primitive ideal space of the $\rm C^*$-algebra of the affine semigroup of algebraic integers, Math. Proc. Cambridge Philos. Soc. 154 (2013), no. 1, 119–126. MR 3002587, DOI 10.1017/S0305004112000485
- Robert M. Fossum, The divisor class group of a Krull domain, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74, Springer-Verlag, New York-Heidelberg, 1973. MR 0382254, DOI 10.1007/978-3-642-88405-4
- Christian Gottlieb, On finite unions of ideals and cosets, Comm. Algebra 22 (1994), no. 8, 3087–3097. MR 1272374, DOI 10.1080/00927879408825014
- William Heinzer, Integral domains in which each non-zero ideal is divisorial, Mathematika 15 (1968), 164–170. MR 236161, DOI 10.1112/S0025579300002527
- Nigel Higson and Gennadi Kasparov, $E$-theory and $KK$-theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001), no. 1, 23–74. MR 1821144, DOI 10.1007/s002220000118
- Eberhard Kirchberg and Mikael Rørdam, Non-simple purely infinite $C^\ast$-algebras, Amer. J. Math. 122 (2000), no. 3, 637–666. MR 1759891, DOI 10.1353/ajm.2000.0021
- Eberhard Kirchberg and Mikael Rørdam, Infinite non-simple $C^*$-algebras: absorbing the Cuntz algebras $\scr O_\infty$, Adv. Math. 167 (2002), no. 2, 195–264. MR 1906257, DOI 10.1006/aima.2001.2041
- Marcelo Laca and Sergey Neshveyev, Type $\rm III_1$ equilibrium states of the Toeplitz algebra of the affine semigroup over the natural numbers, J. Funct. Anal. 261 (2011), no. 1, 169–187. MR 2785897, DOI 10.1016/j.jfa.2011.03.009
- Marcelo Laca and Iain Raeburn, Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers, Adv. Math. 225 (2010), no. 2, 643–688. MR 2671177, DOI 10.1016/j.aim.2010.03.007
- Xin Li, Ring $C^*$-algebras, Math. Ann. 348 (2010), no. 4, 859–898. MR 2721644, DOI 10.1007/s00208-010-0502-x
- Xin Li, Semigroup $\textrm {C}^*$-algebras and amenability of semigroups, J. Funct. Anal. 262 (2012), no. 10, 4302–4340. MR 2900468, DOI 10.1016/j.jfa.2012.02.020
- Xin Li, Nuclearity of semigroup $C^*$-algebras and the connection to amenability, Adv. Math. 244 (2013), 626–662. MR 3077884, DOI 10.1016/j.aim.2013.05.016
- Xin Li, On K-theoretic invariants of semigroup $\textrm {C}^*$-algebras attached to number fields, Adv. Math. 264 (2014), 371–395. MR 3250289, DOI 10.1016/j.aim.2014.07.014
- X. Li and M. D. Norling, Independent resolutions for totally disconnected dynamical systems II: $C^*$-algebraic case, arXiv:1404.6169, accepted for publication in J. Optim. Theory.
- Magnus Dahler Norling, Inverse semigroup $C^*$-algebras associated with left cancellative semigroups, Proc. Edinb. Math. Soc. (2) 57 (2014), no. 2, 533–564. MR 3200323, DOI 10.1017/S0013091513000540
- Cornel Pasnicu and Mikael Rørdam, Purely infinite $C^*$-algebras of real rank zero, J. Reine Angew. Math. 613 (2007), 51–73. MR 2377129, DOI 10.1515/CRELLE.2007.091
- M. Rørdam, Classification of nuclear, simple $C^*$-algebras, Classification of nuclear $C^*$-algebras. Entropy in operator algebras, Encyclopaedia Math. Sci., vol. 126, Springer, Berlin, 2002, pp. 1–145. MR 1878882, DOI 10.1007/978-3-662-04825-2_{1}
- Peter Stevenhagen, The arithmetic of number rings, Algorithmic number theory: lattices, number fields, curves and cryptography, Math. Sci. Res. Inst. Publ., vol. 44, Cambridge Univ. Press, Cambridge, 2008, pp. 209–266. MR 2467548
Additional Information
- Xin Li
- Affiliation: School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
- MR Author ID: 911893
- ORCID: 0000-0002-2243-3742
- Email: xin.li@qmul.ac.uk
- Received by editor(s): December 2, 2013
- Received by editor(s) in revised form: April 29, 2014
- Published electronically: September 15, 2015
- Additional Notes: This research was supported by the ERC through AdG 267079
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 4417-4437
- MSC (2010): Primary 46L05; Secondary 11R04, 13F05
- DOI: https://doi.org/10.1090/tran/6469
- MathSciNet review: 3453375