## Sets of uniformly absolutely continuous norm in symmetric spaces of measurable operators

HTML articles powered by AMS MathViewer

- by P. G. Dodds, B. de Pagter and F. Sukochev PDF
- Trans. Amer. Math. Soc.
**368**(2016), 4315-4355 Request permission

## Abstract:

We characterise sets of uniformly absolutely continuous norm in strongly symmetric spaces of $\tau$-measurable operators. Applications are given to the study of relatively weakly compact and relatively compact sets and to compactness properties of operators dominated in the sense of complete positivity by compact or by Dunford-Pettis operators.## References

- Charalambos D. Aliprantis and Owen Burkinshaw,
*Positive operators*, Pure and Applied Mathematics, vol. 119, Academic Press, Inc., Orlando, FL, 1985. MR**809372** - Charles A. Akemann,
*The dual space of an operator algebra*, Trans. Amer. Math. Soc.**126**(1967), 286–302. MR**206732**, DOI 10.1090/S0002-9947-1967-0206732-8 - Sergey V. Astashkin, Nigel Kalton, and Fyodor A. Sukochev,
*Cesaro mean convergence of martingale differences in rearrangement invariant spaces*, Positivity**12**(2008), no. 3, 387–406. MR**2421142**, DOI 10.1007/s11117-007-2146-y - T. Andô,
*On fundamental properties of a Banach space with a cone*, Pacific J. Math.**12**(1962), 1163–1169. MR**150572**, DOI 10.2140/pjm.1962.12.1163 - A. M. Bikchentaev,
*A block projection operator in normed ideal spaces of measurable operators*, Izv. Vyssh. Uchebn. Zaved. Mat.**2**(2012), 86–91 (Russian, with English and Russian summaries); English transl., Russian Math. (Iz. VUZ)**56**(2012), no. 2, 75–79. MR**3076533**, DOI 10.3103/S1066369X12020107 - Vladimir I. Chilin, Andrei V. Krygin, and Pheodor A. Sukochev,
*Extreme points of convex fully symmetric sets of measurable operators*, Integral Equations Operator Theory**15**(1992), no. 2, 186–226. MR**1147280**, DOI 10.1007/BF01204237 - V. I. Chilin and F. A. Sukochev,
*Weak convergence in non-commutative symmetric spaces*, J. Operator Theory**31**(1994), no. 1, 35–65. MR**1316983** - V. I. Chilin, A. A. Sedaev, and F. A. Sukochev,
*Weak compactness in Lorentz spaces*, Uzb. Math. J.**1**(1993), 84–93 (in Russian). - V. I. Chilin, P. G. Dodds, A. A. Sedaev, and F. A. Sukochev,
*Characterisations of Kadec-Klee properties in symmetric spaces of measurable functions*, Trans. Amer. Math. Soc.**348**(1996), no. 12, 4895–4918. MR**1390973**, DOI 10.1090/S0002-9947-96-01782-5 - V. I. Chilin, P. G. Dodds, and F. A. Sukochev,
*The Kadec-Klee property in symmetric spaces of measurable operators*, Israel J. Math.**97**(1997), 203–219. MR**1441249**, DOI 10.1007/BF02774037 - Jacques Dixmier,
*von Neumann algebras*, North-Holland Mathematical Library, vol. 27, North-Holland Publishing Co., Amsterdam-New York, 1981. With a preface by E. C. Lance; Translated from the second French edition by F. Jellett. MR**641217** - Peter G. Dodds, Theresa K.-Y. Dodds, and Ben de Pagter,
*Noncommutative Banach function spaces*, Math. Z.**201**(1989), no. 4, 583–597. MR**1004176**, DOI 10.1007/BF01215160 - Peter G. Dodds, Theresa K.-Y. Dodds, and Ben de Pagter,
*A general Markus inequality*, Miniconference on Operators in Analysis (Sydney, 1989) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 24, Austral. Nat. Univ., Canberra, 1990, pp. 47–57. MR**1060110** - Peter G. Dodds, Theresa K. Dodds, and Ben de Pagter,
*Weakly compact subsets of symmetric operator spaces*, Math. Proc. Cambridge Philos. Soc.**110**(1991), no. 1, 169–182. MR**1104612**, DOI 10.1017/S0305004100070225 - Peter G. Dodds, Theresa K.-Y. Dodds, and Ben de Pagter,
*Noncommutative Köthe duality*, Trans. Amer. Math. Soc.**339**(1993), no. 2, 717–750. MR**1113694**, DOI 10.1090/S0002-9947-1993-1113694-3 - P. G. Dodds, T. K. Dodds, F. A. Sukochev, and O. Ye. Tikhonov,
*A non-commutative Yosida-Hewitt theorem and convex sets of measurable operators closed locally in measure*, Positivity**9**(2005), no. 3, 457–484. MR**2188531**, DOI 10.1007/s11117-005-1384-0 - P. G. Dodds and D. H. Fremlin,
*Compact operators in Banach lattices*, Israel J. Math.**34**(1979), no. 4, 287–320 (1980). MR**570888**, DOI 10.1007/BF02760610 - P. G. Dodds and B. de Pagter,
*Completely positive compact operators on non-commutative symmetric spaces*, Positivity**14**(2010), no. 4, 665–679. MR**2741325**, DOI 10.1007/s11117-010-0073-9 - P. G. Dodds and B. de Pagter,
*The non-commutative Yosida-Hewitt decomposition revisited*, Trans. Amer. Math. Soc.**364**(2012), no. 12, 6425–6457. MR**2958942**, DOI 10.1090/S0002-9947-2012-05569-3 - P. G. Dodds and B. de Pagter,
*Normed Köthe spaces: a non-commutative viewpoint*, Indag. Math. (N.S.)**25**(2014), no. 2, 206–249. MR**3151815**, DOI 10.1016/j.indag.2013.01.009 - P. G. Dodds, B. de Pagter, and F. Sukochev,
*Theory of Noncommutative Integration*, unpublished monograph, to appear. - P. G. Dodds, F. A. Sukochev, and G. Schlüchtermann,
*Weak compactness criteria in symmetric spaces of measurable operators*, Math. Proc. Cambridge Philos. Soc.**131**(2001), no. 2, 363–384. MR**1857125**, DOI 10.1017/S0305004101005114 - Thierry Fack and Hideki Kosaki,
*Generalized $s$-numbers of $\tau$-measurable operators*, Pacific J. Math.**123**(1986), no. 2, 269–300. MR**840845**, DOI 10.2140/pjm.1986.123.269 - D. H. Fremlin,
*Stable subspaces of $L^{1}+L^{\infty }$*, Proc. Cambridge Philos. Soc.**64**(1968), 625–643. MR**225154**, DOI 10.1017/s0305004100043292 - A. Grothendieck,
*Topological vector spaces*, Notes on Mathematics and its Applications, Gordon and Breach Science Publishers, New York-London-Paris, 1973. Translated from the French by Orlando Chaljub. MR**0372565** - U. Haagerup, H. P. Rosenthal, and F. A. Sukochev,
*Banach embedding properties of non-commutative $L^p$-spaces*, Mem. Amer. Math. Soc.**163**(2003), no. 776, vi+68. MR**1963854**, DOI 10.1090/memo/0776 - N. J. Kalton and F. A. Sukochev,
*Symmetric norms and spaces of operators*, J. Reine Angew. Math.**621**(2008), 81–121. MR**2431251**, DOI 10.1515/CRELLE.2008.059 - S. G. Kreĭn, Yu. Ī. Petunīn, and E. M. Semënov,
*Interpolation of linear operators*, Translations of Mathematical Monographs, vol. 54, American Mathematical Society, Providence, R.I., 1982. Translated from the Russian by J. Szűcs. MR**649411** - A. V. Krygin, E. M. Sheremet’ev, and F. A. Sukochev,
*Conjugation of weak and measure convergence in noncommutative symmetric spaces,*Dokl. Akad. Nauk UzSSR (1993), no. 2, 8-9 (in Russian). - A. V. Krygin, E. M. Sheremet’ev, and F. A. Sukochev,
*Convergence in measure, weak convergence and structure of subspaces in symmetric spaces of measurable operators*, unpublished manuscript, 1993. - Peter Meyer-Nieberg,
*Banach lattices*, Universitext, Springer-Verlag, Berlin, 1991. MR**1128093**, DOI 10.1007/978-3-642-76724-1 - Edward Nelson,
*Notes on non-commutative integration*, J. Functional Analysis**15**(1974), 103–116. MR**0355628**, DOI 10.1016/0022-1236(74)90014-7 - Erwin Neuhardt,
*Order properties of compact maps on $L^p$-spaces associated with von Neumann algebras*, Math. Scand.**66**(1990), no. 1, 110–116. MR**1060901**, DOI 10.7146/math.scand.a-12295 - B. de Pagter, H. Witvliet, and F. A. Sukochev,
*Double operator integrals*, J. Funct. Anal.**192**(2002), no. 1, 52–111. MR**1918492**, DOI 10.1006/jfan.2001.3898 - Timur Oikhberg and Eugeniu Spinu,
*Domination of operators in the non-commutative setting*, Studia Math.**219**(2013), no. 1, 35–67. MR**3139423**, DOI 10.4064/sm219-1-3 - Narcisse Randrianantoanina,
*Sequences in non-commutative $L^p$-spaces*, J. Operator Theory**48**(2002), no. 2, 255–272. MR**1938797** - Yves Raynaud,
*On ultrapowers of non commutative $L_p$ spaces*, J. Operator Theory**48**(2002), no. 1, 41–68. MR**1926043** - Yves Raynaud and Quanhua Xu,
*On subspaces of non-commutative $L_p$-spaces*, J. Funct. Anal.**203**(2003), no. 1, 149–196. MR**1996870**, DOI 10.1016/S0022-1236(03)00045-4 - Kazuyuki Saitô,
*On the preduals of $W^{\ast }$-algebras*, Tohoku Math. J. (2)**19**(1967), 324–331. MR**226416**, DOI 10.2748/tmj/1178243282 - F. A. Sukochev and V. I. Chilin,
*A convergence criterion in regular noncommutative symmetric spaces*, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk**4**(1990), 34–39, 90 (Russian, with Uzbek summary). MR**1108770** - F. A. Sukochev and V. I. Chilin,
*Symmetric spaces over semifinite von Neumann algebras*, Dokl. Akad. Nauk SSSR**313**(1990), no. 4, 811–815 (Russian); English transl., Soviet Math. Dokl.**42**(1991), no. 1, 97–101. MR**1080637** - Masamichi Takesaki,
*Theory of operator algebras. I*, Springer-Verlag, New York-Heidelberg, 1979. MR**548728**, DOI 10.1007/978-1-4612-6188-9 - M. Terp,
*$L^p$-spaces associated with von Neumann algebras*, Notes, Copenhagen University (1981). - E. V. Tokarev,
*Subspaces of certain symmetric spaces*, Teor. Funkciĭ Funkcional. Anal. i Priložen.**Vyp. 24**(1975), 156–161, iv (Russian). MR**0626854** - A. C. Zaanen,
*Riesz spaces. II*, North-Holland Mathematical Library, vol. 30, North-Holland Publishing Co., Amsterdam, 1983. MR**704021**, DOI 10.1016/S0924-6509(08)70234-4

## Additional Information

**P. G. Dodds**- Affiliation: School of Computer Science, Mathematics and Engineering, Flinders University, GPO Box 2100, Adelaide 5001, Australia
- Email: peter@csem.flinders.edu.au
**B. de Pagter**- Affiliation: Delft Institute of Applied Mathematics, Faculty EEMCS, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
- Email: b.depagter@tudelft.nl
**F. Sukochev**- Affiliation: School of Mathematics and Statistics, University of New South Wales, Kensington 2052, New South Wales, Australia
- MR Author ID: 229620
- Email: f.sukochev@unsw.edu.au
- Received by editor(s): July 25, 2013
- Received by editor(s) in revised form: April 29, 2014
- Published electronically: September 15, 2015
- Additional Notes: This work was partially supported by the Australian Research Council.
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**368**(2016), 4315-4355 - MSC (2010): Primary 46L52; Secondary 46E30, 47A30
- DOI: https://doi.org/10.1090/tran/6477
- MathSciNet review: 3453373