Lois de réciprocité supérieures et points rationnels
HTML articles powered by AMS MathViewer
- by J.-L. Colliot-Thélène, R. Parimala and V. Suresh PDF
- Trans. Amer. Math. Soc. 368 (2016), 4219-4255 Request permission
Abstract:
Soit $K=\mathbb {C}((x,y))$ ou $K=\mathbb {C}((x))(y)$. Soit $G$ un $K$-groupe algébrique linéaire connexe. Il a été établi que si $G$ est $K$-rationnel, c’est-à-dire de corps des fonctions transcendant pur sur $K$, si un espace principal homogène sous $G$ a des points rationnels dans tous les complétés de $K$ par rapport aux valuations de $K$, alors il a un point rationnel. Nous montrons ici qu’en général l’hypothèse de $K$-rationalité ne peut être omise. Nous utilisons pour cela une obstruction d’un nouveau type, fondée sur les lois de réciprocité supérieure sur un schéma de dimension deux. Nous donnons aussi une famille d’espaces principaux homogènes pour laquelle cette obstruction raffinée à l’existence d’un point rationnel est la seule obstruction.
Abstract Let $K=\mathbb {C}((x,y))$ or $K=\mathbb {C}((x))(y)$. Let $G$ be a connected linear algebraic group over $K$. Under the assumption that the $K$-variety $G$ is $K$-rational, i.e. that the function field is purely transcendental, it was proved that a principal homogeneous space of $G$ has a rational point over $K$ as soon as it has one over each completion of $K$ with respect to a valuation. In this paper we show that one cannot in general do without the $K$-rationality assumption. To produce our examples, we introduce a new type of obstruction. It is based on higher reciprocity laws on a 2-dimensional scheme. We also produce a family of principal homogeneous spaces for which the refined obstruction controls exactly the existence of rational points.
References
- Shreeram Abhyankar, Simultaneous resolution for algebraic surfaces, Amer. J. Math. 78 (1956), 761–790. MR 82722, DOI 10.2307/2372467
- Spencer Bloch and Arthur Ogus, Gersten’s conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4) 7 (1974), 181–201 (1975). MR 412191, DOI 10.24033/asens.1266
- Mikhail Borovoi, The Brauer-Manin obstructions for homogeneous spaces with connected or abelian stabilizer, J. Reine Angew. Math. 473 (1996), 181–194. MR 1390687, DOI 10.1515/crll.1995.473.181
- M. Borovoi, J.-L. Colliot-Thélène, and A. N. Skorobogatov, The elementary obstruction and homogeneous spaces, Duke Math. J. 141 (2008), no. 2, 321–364 (English, with English and French summaries). MR 2376817, DOI 10.1215/S0012-7094-08-14124-9
- Mikhail Borovoi, Boris Kunyavskiĭ, and Philippe Gille, Arithmetical birational invariants of linear algebraic groups over two-dimensional geometric fields, J. Algebra 276 (2004), no. 1, 292–339. MR 2054399, DOI 10.1016/j.jalgebra.2003.10.024
- J.-L. Colliot-Thélène, Birational invariants, purity and the Gersten conjecture, $K$-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992) Proc. Sympos. Pure Math., vol. 58, Amer. Math. Soc., Providence, RI, 1995, pp. 1–64. MR 1327280
- Jean-Louis Colliot-Thélène, Groupes linéaires sur les corps de fonctions de courbes réelles, J. Reine Angew. Math. 474 (1996), 139–167 (French). MR 1390694, DOI 10.1515/crll.1996.474.139
- Jean-Louis Colliot-Thélène, Groupe de Brauer non ramifié d’espaces homogènes de tores, J. Théor. Nombres Bordeaux 26 (2014), no. 1, 69–83 (French, with English and French summaries). MR 3232767, DOI 10.5802/jtnb.859
- J.-L. Colliot-Thélène, P. Gille, and R. Parimala, Arithmetic of linear algebraic groups over 2-dimensional geometric fields, Duke Math. J. 121 (2004), no. 2, 285–341. MR 2034644, DOI 10.1215/S0012-7094-04-12124-4
- J.-L. Colliot-Thélène, D. Harari, and A. N. Skorobogatov, Compactification équivariante d’un tore (d’après Brylinski et Künnemann), Expo. Math. 23 (2005), no. 2, 161–170 (French, with English summary). MR 2155008, DOI 10.1016/j.exmath.2005.01.016
- J.-L. Colliot-Thélène, M. Ojanguren, and R. Parimala, Quadratic forms over fraction fields of two-dimensional Henselian rings and Brauer groups of related schemes, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000) Tata Inst. Fund. Res. Stud. Math., vol. 16, Tata Inst. Fund. Res., Bombay, 2002, pp. 185–217. MR 1940669
- Jean-Louis Colliot-Thélène, Raman Parimala, and Venapally Suresh, Patching and local-global principles for homogeneous spaces over function fields of $p$-adic curves, Comment. Math. Helv. 87 (2012), no. 4, 1011–1033. MR 2984579, DOI 10.4171/CMH/276
- Antoine Ducros, L’obstruction de réciprocité à l’existence de points rationnels pour certaines variétés sur le corps des fonctions d’une courbe réelle, J. Reine Angew. Math. 504 (1998), 73–114 (French, with English summary). MR 1656814, DOI 10.1515/crll.1998.113
- Philippe Gille and Tamás Szamuely, Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, vol. 101, Cambridge University Press, Cambridge, 2006. MR 2266528, DOI 10.1017/CBO9780511607219
- Alexander Grothendieck, Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 46–66 (French). MR 244269
- D. Harari and T. Szamuely, Local-global questions for tori over $p$-adic function fields, http://arxiv.org/abs/1307.4782, to appear in J. Algebraic Geom.
- David Harbater, Julia Hartmann, and Daniel Krashen, Applications of patching to quadratic forms and central simple algebras, Invent. Math. 178 (2009), no. 2, 231–263. MR 2545681, DOI 10.1007/s00222-009-0195-5
- D. Harbater, J. Hartmann, and D. Krashen, Local-global principles for torsors over arithmetic curves, to appear in Amer. J. Math., http://http://arxiv.org/abs/1108.3323.
- David Harbater, Julia Hartmann, and Daniel Krashen, Local-global principles for Galois cohomology, Comment. Math. Helv. 89 (2014), no. 1, 215–253. MR 3177913, DOI 10.4171/CMH/317
- Yong Hu, Local-global principle for quadratic forms over fraction fields of two-dimensional Henselian domains, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 6, 2131–2143 (2013) (English, with English and French summaries). MR 3060754, DOI 10.5802/aif.2745
- Yong Hu, Division algebras and quadratic forms over fraction fields of two-dimensional henselian domains, Algebra Number Theory 7 (2013), no. 8, 1919–1952. MR 3134039, DOI 10.2140/ant.2013.7.1919
- Yong Hu, Hasse principle for simply connected groups over function fields of surfaces, J. Ramanujan Math. Soc. 29 (2014), no. 2, 155–199. MR 3237731
- Uwe Jannsen and Shuji Saito, Kato homology of arithmetic schemes and higher class field theory over local fields, Doc. Math. Extra Vol. (2003), 479–538. Kazuya Kato’s fiftieth birthday. MR 2046606
- Kazuya Kato, A Hasse principle for two-dimensional global fields, J. Reine Angew. Math. 366 (1986), 142–183. With an appendix by Jean-Louis Colliot-Thélène. MR 833016, DOI 10.1515/crll.1986.366.142
- Y. I. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 401–411. MR 0427322
- I. A. Panin, The equicharacteristic case of the Gersten conjecture, Tr. Mat. Inst. Steklova 241 (2003), no. Teor. Chisel, Algebra i Algebr. Geom., 169–178; English transl., Proc. Steklov Inst. Math. 2(241) (2003), 154–163. MR 2024050
- R. Parimala, Arithmetic of linear algebraic groups over two-dimensional fields, Proceedings of the International Congress of Mathematicians. Volume I, Hindustan Book Agency, New Delhi, 2010, pp. 339–361. MR 2827897
- R. Preeti, Classification theorems for Hermitian forms, the Rost kernel and Hasse principle over fields with $cd_2(k)\leq 3$, J. Algebra 385 (2013), 294–313. MR 3049572, DOI 10.1016/j.jalgebra.2013.02.038
- Michel Raynaud, Anneaux locaux henséliens, Lecture Notes in Mathematics, Vol. 169, Springer-Verlag, Berlin-New York, 1970 (French). MR 0277519
- Joël Riou, Exposé XVI. Classes de Chern, morphismes de Gysin, pureté absolue, Astérisque 363-364 (2014), 301–349 (French). Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents. MR 3329786
- Shuji Saito and Kanetomo Sato, A finiteness theorem for zero-cycles over $p$-adic fields, Ann. of Math. (2) 172 (2010), no. 3, 1593–1639. With an appendix by Uwe Jannsen. MR 2726095, DOI 10.4007/annals.2010.172.1593
- J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12–80 (French). MR 631309, DOI 10.1515/crll.1981.327.12
- Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577, DOI 10.1007/BFb0108758
- Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368, DOI 10.1007/978-1-4612-0851-8
Additional Information
- J.-L. Colliot-Thélène
- Affiliation: C.N.R.S., Université Paris Sud, Mathématiques, Bâtiment 425, 91405 Orsay Cedex, France
- MR Author ID: 50705
- Email: jlct@math.u-psud.fr
- R. Parimala
- Affiliation: Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322
- MR Author ID: 136195
- Email: parimala@mathcs.emory.edu
- V. Suresh
- Affiliation: Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322
- Email: suresh.venapally@gmail.com
- Received by editor(s): February 1, 2014
- Received by editor(s) in revised form: February 8, 2014, and April 15, 2014
- Published electronically: September 4, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 4219-4255
- MSC (2010): Primary 14H25; Secondary 11E72
- DOI: https://doi.org/10.1090/tran/6519
- MathSciNet review: 3453370