Spectral flow is a complete invariant for detecting bifurcation of critical points
HTML articles powered by AMS MathViewer
- by James C. Alexander and Patrick M. Fitzpatrick PDF
- Trans. Amer. Math. Soc. 368 (2016), 4439-4459 Request permission
Abstract:
Given a one-parameter path of equations for which there is a trivial branch of solutions, to determine the points on the branch from which there bifurcate nontrivial solutions, there is the heuristic principle of linearization. That is to say, at each point on the branch, linearize the equation, and justify the inference that points on the branch that are bifurcation points for the path of linearized equations are also bifurcation points for the original path of equations. In quite general circumstances, for the bifurcation of critical points, we show that, at isolated singular points of the path of linearizations, a property of the path that is known to be sufficient to force bifurcation of nontrivial critical points is also necessary.
To be more precise, let $I$ be an open interval of real numbers that contains the point $\lambda _0$ and $B$ an open ball about the origin of a real, separable Hilbert space $H.$ Let $\psi \colon I\times B\to \ R$ be a family of $C^2$ functions. For $\lambda \in I,$ assume $\nabla _x\psi (\lambda ,0)=0,$ and set $\operatorname {Hessian} _x\psi (\lambda ,\,0)\equiv L_\lambda .$ Assume $L_\lambda$ is invertible if $\lambda \ne \lambda _0$ and $L_{\lambda _0}$ is Fredholm. It is known that if the spectral flow of $L\colon I\to {\mathcal L}(H)$ across $\lambda _0$ is nonzero, then in each neighborhood of $(\lambda _0,\,0)$ there are pairs $(\lambda ,\,x),$ $x\ne 0,$ for which $\nabla _x\psi (\lambda ,x)=0.$ We prove that if $L\colon I\to {\mathcal L}(H)$ is a continuous path of symmetric operators for which $L_\lambda$ is invertible for $\lambda \ne \lambda _0,$ $L_{\lambda _0}$ is Fredholm, and the spectral flow of $L\colon I\to {\mathcal L}(H)$ across $\lambda _0$ is zero, then there is an open interval $J$ that contains the point $\lambda _0$, an open ball $B$ about the origin, and a family $\psi \colon J\times B\to \ R$ of $C^2$ functions such that, for each $\lambda \in J,$ $\nabla _x\psi (\lambda ,0)=0$ and $\operatorname {Hessian} _x\psi (\lambda ,\,0)= L_\lambda ,$ but $\nabla _x\psi (\lambda ,x)\ne 0$ if $x\ne 0.$ Therefore, at an isolated singular point of the path of linearizations of the gradient, under the sole further assumption that the linearization at the singular point is Fredholm, spectral flow is a complete invariant for the detection of bifurcation of nontrivial critical points.
References
- M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. III, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 71–99. MR 397799, DOI 10.1017/S0305004100052105
- Thomas Bartsch, Topological methods for variational problems with symmetries, Lecture Notes in Mathematics, vol. 1560, Springer-Verlag, Berlin, 1993. MR 1295238, DOI 10.1007/BFb0073859
- Melvyn S. Berger, Bifurcation theory and the type numbers of Marston Morse, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1737–1738. MR 298485, DOI 10.1073/pnas.69.7.1737
- Shui Nee Chow and Jack K. Hale, Methods of bifurcation theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 251, Springer-Verlag, New York-Berlin, 1982. MR 660633, DOI 10.1007/978-1-4613-8159-4
- Shui-Nee Chow and Reiner Lauterbach, A bifurcation theorem for critical points of variational problems, Nonlinear Anal. 12 (1988), no. 1, 51–61. MR 924752, DOI 10.1016/0362-546X(88)90012-0
- E. Ciriza, P. M. Fitzpatrick, and J. Pejsachowicz, Uniqueness of spectral flow, Math. Comput. Modelling 32 (2000), no. 11-13, 1495–1501. Nonlinear operator theory. MR 1800672, DOI 10.1016/S0895-7177(00)00221-1
- Patrick M. Fitzpatrick, Jacobo Pejsachowicz, and Lazaro Recht, Spectral flow and bifurcation of critical points, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 7, 743–747 (English, with English and French summaries). MR 1483710, DOI 10.1016/S0764-4442(97)80052-3
- Patrick M. Fitzpatrick, Jacobo Pejsachowicz, and Lazaro Recht, Spectral flow and bifurcation of critical points of strongly-indefinite functionals. I. General theory, J. Funct. Anal. 162 (1999), no. 1, 52–95. MR 1674534, DOI 10.1006/jfan.1998.3366
- Patrick M. Fitzpatrick, Jacobo Pejsachowicz, and Lazaro Recht, Spectral flow and bifurcation of critical points of strongly indefinite functionals. II. Bifurcation of periodic orbits of Hamiltonian systems, J. Differential Equations 163 (2000), no. 1, 18–40. MR 1755066, DOI 10.1006/jdeq.1999.3723
- Joseph B. Keller and Stuart Antman (eds.), Bifurcation theory and nonlinear eigenvalue problems, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0241213
- Hansjörg Kielhöfer, A bifurcation theorem for potential operators, J. Funct. Anal. 77 (1988), no. 1, 1–8. MR 930387, DOI 10.1016/0022-1236(88)90073-0
- Shoshichi Kobayashi, On conjugate and cut loci, Global Differential Geometry (Shiin-shen Chern, ed.), Studies in Mathematics, vol. 27, The Mathematical Association of America, 1989, pp. 140–169.
- M. A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon, 1964.
- M. A. Krasnosel′skiĭ and P. P. Zabreĭko, Geometrical methods of nonlinear analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 263, Springer-Verlag, Berlin, 1984. Translated from the Russian by Christian C. Fenske. MR 736839, DOI 10.1007/978-3-642-69409-7
- E. M. Mahamadiev, M. A. Krasnosel’skii, and A. V. Pokrovskii, Bifurcation values of parameters of variational problems, Soviet Math. Doklada 22 (1980), 682–686.
- Antonio Marino and Giovanni Prodi, La teoria di Morse per gli spazi di Hilbert, Rend. Sem. Mat. Univ. Padova 41 (1968), 43–68. MR 258068
- Jean Mawhin and Michel Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, vol. 74, Springer-Verlag, New York, 1989. MR 982267, DOI 10.1007/978-1-4757-2061-7
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554, DOI 10.1515/9781400881826
- Jacobo Pejsachowicz and Nils Waterstraat, Bifurcation of critical points for continuous families of $C^2$ functionals of Fredholm type, J. Fixed Point Theory Appl. 13 (2013), no. 2, 537–560. MR 3122340, DOI 10.1007/s11784-013-0137-0
- Patrick J. Rabier, Generalized Jordan chains and two bifurcation theorems of Krasnosel′skiĭ, Nonlinear Anal. 13 (1989), no. 8, 903–934. MR 1009078, DOI 10.1016/0362-546X(89)90021-7
- Paul H. Rabinowitz, A bifurcation theorem for potential operators, J. Functional Analysis 25 (1977), no. 4, 412–424. MR 0463990, DOI 10.1016/0022-1236(77)90047-7
- Paul H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 845785, DOI 10.1090/cbms/065
- Takashi Sakai, On the structure of cut loci in compact Riemannian symmetric spaces, Math. Ann. 235 (1978), no. 2, 129–148. MR 500710, DOI 10.1007/BF01405010
- Masaru Takeuchi, On conjugate loci and cut loci of compact symmetric spaces. I, Tsukuba J. Math. 2 (1978), 35–68. MR 531960, DOI 10.21099/tkbjm/1496158504
Additional Information
- James C. Alexander
- Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742
- MR Author ID: 24625
- Patrick M. Fitzpatrick
- Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742
- MR Author ID: 67305
- Received by editor(s): May 15, 2013
- Received by editor(s) in revised form: May 1, 2014
- Published electronically: January 13, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 4439-4459
- MSC (2010): Primary 46T99, 47J15, 58E05, 58E07
- DOI: https://doi.org/10.1090/tran/6474
- MathSciNet review: 3453376