On suspensions and conjugacy of hyperbolic automorphisms
HTML articles powered by AMS MathViewer
- by François Dahmani PDF
- Trans. Amer. Math. Soc. 368 (2016), 5565-5577 Request permission
Abstract:
We remark that the conjugacy problem for pairs of hyperbolic automorphisms of a finitely presented group (typically a free group) is decidable. The solution that we propose uses the isomorphism problem for the suspensions, and the study of their automorphism group.References
- Goulnara Arzhantseva, Jean-François Lafont, and Ashot Minasyan, Isomorphism versus commensurability for a class of finitely presented groups, J. Group Theory 17 (2014), no. 2, 361–378. MR 3176665, DOI 10.1515/jgt-2013-0050
- O. Bogopolski, A. Martino, and E. Ventura, Orbit decidability and the conjugacy problem for some extensions of groups, Trans. Amer. Math. Soc. 362 (2010), no. 4, 2003–2036. MR 2574885, DOI 10.1090/S0002-9947-09-04817-X
- Hyman Bass, Covering theory for graphs of groups, J. Pure Appl. Algebra 89 (1993), no. 1-2, 3–47. MR 1239551, DOI 10.1016/0022-4049(93)90085-8
- P. Brinkmann, Hyperbolic automorphisms of free groups, Geom. Funct. Anal. 10 (2000), no. 5, 1071–1089. MR 1800064, DOI 10.1007/PL00001647
- Peter Brinkmann, Splittings of mapping tori of free group automorphisms, Geom. Dedicata 93 (2002), 191–203. MR 1934698, DOI 10.1023/A:1020329530768
- François Dahmani, Existential questions in (relatively) hyperbolic groups, Israel J. Math. 173 (2009), 91–124. MR 2570661, DOI 10.1007/s11856-009-0084-z
- François Dahmani and Vincent Guirardel, Foliations for solving equations in groups: free, virtually free, and hyperbolic groups, J. Topol. 3 (2010), no. 2, 343–404. MR 2651364, DOI 10.1112/jtopol/jtq010
- François Dahmani and Vincent Guirardel, The isomorphism problem for all hyperbolic groups, Geom. Funct. Anal. 21 (2011), no. 2, 223–300. MR 2795509, DOI 10.1007/s00039-011-0120-0
- François Dahmani and Daniel Groves, The isomorphism problem for toral relatively hyperbolic groups, Publ. Math. Inst. Hautes Études Sci. 107 (2008), 211–290. MR 2434694, DOI 10.1007/s10240-008-0014-3
- Jérôme E. Los, On the conjugacy problem for automorphisms of free groups, Topology 35 (1996), no. 3, 779–808. With an addendum by the author. MR 1396778, DOI 10.1016/0040-9383(95)00035-6
- M. Lustig, Structure and conjugacy for automorphisms of free groups I, MPI-Bonn preprint series 2000, No. 241; http://www.mpim-bonn.mpg.de/preprints
- M. Lustig, Structure and conjugacy for automorphisms of free groups II, MPI-Bonn preprint series 2001, No. 4; http://www.mpim-bonn.mpg.de/preprints
- Martin Lustig, Conjugacy and centralizers for iwip automorphisms of free groups, Geometric group theory, Trends Math., Birkhäuser, Basel, 2007, pp. 197–224. MR 2395795, DOI 10.1007/978-3-7643-8412-8_{1}1
- P. Papasoglu, An algorithm detecting hyperbolicity, Geometric and computational perspectives on infinite groups (Minneapolis, MN and New Brunswick, NJ, 1994) DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 25, Amer. Math. Soc., Providence, RI, 1996, pp. 193–200. MR 1364185
- Z. Sela, The isomorphism problem for hyperbolic groups. I, Ann. of Math. (2) 141 (1995), no. 2, 217–283. MR 1324134, DOI 10.2307/2118520
- Jean-Pierre Serre, Arbres, amalgames, $\textrm {SL}_{2}$, Astérisque, No. 46, Société Mathématique de France, Paris, 1977 (French). Avec un sommaire anglais; Rédigé avec la collaboration de Hyman Bass. MR 0476875
- John Stallings, Group theory and three-dimensional manifolds, Yale Mathematical Monographs, vol. 4, Yale University Press, New Haven, Conn.-London, 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1969. MR 0415622
Additional Information
- François Dahmani
- Affiliation: Institut Fourier UMR5582, Université Grenoble Alpes, F-38402 Grenoble, France
- MR Author ID: 714038
- Email: francois.dahmani@ujf-grenoble.fr
- Received by editor(s): April 8, 2014
- Received by editor(s) in revised form: July 11, 2014
- Published electronically: October 20, 2015
- Additional Notes: The author was partially supported by the ANR (grant 2011-BS01-013-02, and LabEx Persyval 11-LABX-0025) and the Institut Universitaire de France
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 5565-5577
- MSC (2010): Primary 20F10, 20F28, 20F67
- DOI: https://doi.org/10.1090/tran/6530
- MathSciNet review: 3458391