Group actions on spheres with rank one isotropy
HTML articles powered by AMS MathViewer
- by Ian Hambleton and Ergün Yalçın PDF
- Trans. Amer. Math. Soc. 368 (2016), 5951-5977 Request permission
Abstract:
Let $G$ be a rank two finite group, and let $\mathcal {H}$ denote the family of all rank one $p$-subgroups of $G$ for which $\operatorname {rank}_p(G)=2$. We show that a rank two finite group $G$ which satisfies certain explicit group-theoretic conditions admits a finite $G$-CW-complex $X\simeq S^n$ with isotropy in $\mathcal {H}$, whose fixed sets are homotopy spheres. Our construction provides an infinite family of new non-linear $G$-CW-complex examples.References
- Alejandro Adem, Lectures on the cohomology of finite groups, Interactions between homotopy theory and algebra, Contemp. Math., vol. 436, Amer. Math. Soc., Providence, RI, 2007, pp. 317–334. MR 2355780, DOI 10.1090/conm/436/08415
- Alejandro Adem, James F. Davis, and Özgün Ünlü, Fixity and free group actions on products of spheres, Comment. Math. Helv. 79 (2004), no. 4, 758–778. MR 2099121, DOI 10.1007/s00014-004-0810-4
- Alejandro Adem and Jeff H. Smith, Periodic complexes and group actions, Ann. of Math. (2) 154 (2001), no. 2, 407–435. MR 1865976, DOI 10.2307/3062102
- J. L. Alperin, Richard Brauer, and Daniel Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow $2$-subgroups, Trans. Amer. Math. Soc. 151 (1970), 1–261. MR 284499, DOI 10.1090/S0002-9947-1970-0284499-5
- D. J. Benson, Representations and cohomology. II, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 31, Cambridge University Press, Cambridge, 1998. Cohomology of groups and modules. MR 1634407
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Albrecht Dold, Zur Homotopietheorie der Kettenkomplexe, Math. Ann. 140 (1960), 278–298 (German). MR 112906, DOI 10.1007/BF01360307
- Ronald M. Dotzel and Gary C. Hamrick, $p$-group actions on homology spheres, Invent. Math. 62 (1981), no. 3, 437–442. MR 604837, DOI 10.1007/BF01394253
- Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups. Number 3. Part I. Chapter A, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1998. Almost simple $K$-groups. MR 1490581, DOI 10.1090/surv/040.3
- Daniel Gorenstein and John H. Walter, The characterization of finite groups with dihedral Sylow $2$-subgroups. I, J. Algebra 2 (1965), 85–151. MR 177032, DOI 10.1016/0021-8693(65)90027-X
- Ian Hambleton, Semra Pamuk, and Ergün Yalçın, Equivariant CW-complexes and the orbit category, Comment. Math. Helv. 88 (2013), no. 2, 369–425. MR 3048191, DOI 10.4171/CMH/289
- Ian Hambleton and Ergün Yalçin, Homotopy representations over the orbit category, Homology Homotopy Appl. 16 (2014), no. 2, 345–369. MR 3280988, DOI 10.4310/HHA.2014.v16.n2.a19
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703, DOI 10.1007/978-3-642-64981-3
- Stefan Jackowski, James McClure, and Bob Oliver, Homotopy classification of self-maps of $BG$ via $G$-actions. I, Ann. of Math. (2) 135 (1992), no. 1, 183–226. MR 1147962, DOI 10.2307/2946568
- Michael A. Jackson, A quotient of the set $[BG,B\textrm {U}(n)]$ for a finite group $G$ of small rank, J. Pure Appl. Algebra 188 (2004), no. 1-3, 161–174. MR 2030812, DOI 10.1016/j.jpaa.2003.08.001
- Michael A. Jackson, $\textrm {Qd}(p)$-free rank two finite groups act freely on a homotopy product of two spheres, J. Pure Appl. Algebra 208 (2007), no. 3, 821–831. MR 2283428, DOI 10.1016/j.jpaa.2006.03.018
- Wolfgang Lück, Transformation groups and algebraic $K$-theory, Lecture Notes in Mathematics, vol. 1408, Springer-Verlag, Berlin, 1989. Mathematica Gottingensis. MR 1027600, DOI 10.1007/BFb0083681
- Howard H. Mitchell, Determination of the ordinary and modular ternary linear groups, Trans. Amer. Math. Soc. 12 (1911), no. 2, 207–242. MR 1500887, DOI 10.1090/S0002-9947-1911-1500887-3
- Michael E. O’Nan, Automorphisms of unitary block designs, J. Algebra 20 (1972), 495–511. MR 295934, DOI 10.1016/0021-8693(72)90070-1
- Semra Pamuk, Periodic resolutions and finite group actions, ProQuest LLC, Ann Arbor, MI, 2008. Thesis (Ph.D.)–McMaster University (Canada). MR 2792944
- Ted Petrie, Three theorems in transformation groups, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 549–572. MR 561238
- Richard G. Swan, Periodic resolutions for finite groups, Ann. of Math. (2) 72 (1960), 267–291. MR 124895, DOI 10.2307/1970135
- Tammo tom Dieck, Über projektive Moduln und Endlichkeitshindernisse bei Transformationsgruppen, Manuscripta Math. 34 (1981), no. 2-3, 135–155 (German, with English summary). MR 620445, DOI 10.1007/BF01165533
- Tammo tom Dieck, The homotopy type of group actions on homotopy spheres, Arch. Math. (Basel) 45 (1985), no. 2, 174–179. MR 807450, DOI 10.1007/BF01270489
- Tammo tom Dieck, Transformation groups, De Gruyter Studies in Mathematics, vol. 8, Walter de Gruyter & Co., Berlin, 1987. MR 889050, DOI 10.1515/9783110858372.312
- Ozgun Unlu, Constructions of free group actions on products of spheres, ProQuest LLC, Ann Arbor, MI, 2004. Thesis (Ph.D.)–The University of Wisconsin - Madison. MR 2705856
- Özgün Ünlü and Ergün Yalçin, Constructing homologically trivial actions on products of spheres, Indiana Univ. Math. J. 62 (2013), no. 3, 927–945. MR 3164851, DOI 10.1512/iumj.2013.62.5007
Additional Information
- Ian Hambleton
- Affiliation: Department of Mathematics, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- MR Author ID: 80380
- Email: hambleton@mcmaster.ca
- Ergün Yalçın
- Affiliation: Department of Mathematics, Bilkent University, 06800 Bilkent, Ankara, Turkey
- Email: yalcine@fen.bilkent.edu.tr
- Received by editor(s): April 9, 2014
- Received by editor(s) in revised form: September 17, 2014, and December 14, 2014
- Published electronically: October 20, 2015
- Additional Notes: This research was partially supported by NSERC Discovery Grant A4000. The second author was partially supported by TÜBİTAK-TBAG/110T712.
- © Copyright 2015 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 5951-5977
- MSC (2010): Primary 20J05, 55U15, 57S17, 18Gxx
- DOI: https://doi.org/10.1090/tran/6567
- MathSciNet review: 3458403