All creatures great and small
HTML articles powered by AMS MathViewer
- by Martin Goldstern and Saharon Shelah PDF
- Trans. Amer. Math. Soc. 368 (2016), 7551-7577 Request permission
Abstract:
Let $\lambda$ be an uncountable regular cardinal. Assuming $2^{[\lambda ]}=\lambda ^+$, we show that the clone lattice on a set of size $\lambda$ is not dually atomic.References
- V. A. Buevich, A variant of the proof of a completeness criterion for functions of $k$-valued logic, Diskret. Mat. 8 (1996), no. 4, 11–36 (Russian, with Russian summary); English transl., Discrete Math. Appl. 6 (1996), no. 5, 505–530. MR 1447318, DOI 10.1515/dma.1996.6.5.505
- G. P. Gavrilov, Certain conditions for completeness in countable-valued logic, Dokl. Akad. Nauk SSSR 128 (1959), 21–24 (Russian). MR 0107602
- Martin Goldstern and Michael Pinsker, A survey of clones on infinite sets, Algebra Universalis 59 (2008), no. 3-4, 365–403. MR 2470587, DOI 10.1007/s00012-008-2100-2
- Martin Goldstern and Saharon Shelah, Clones on regular cardinals, Fund. Math. 173 (2002), no. 1, 1–20. MR 1899044, DOI 10.4064/fm173-1-1
- Martin Goldstern and Saharon Shelah, Clones from creatures, Trans. Amer. Math. Soc. 357 (2005), no. 9, 3525–3551. MR 2146637, DOI 10.1090/S0002-9947-04-03593-7
- R. Pöschel and L. A. Kalužnin, Funktionen- und Relationenalgebren, Mathematische Monographien [Mathematical Monographs], vol. 15, VEB Deutscher Verlag der Wissenschaften, Berlin, 1979 (German). Ein Kapitel der diskreten Mathematik. [A chapter in discrete mathematics]. MR 543839
- R. W. Quackenbush, A new proof of Rosenberg’s primal algebra characterization theorem, Finite algebra and multiple-valued logic (Szeged, 1979) Colloq. Math. Soc. János Bolyai, vol. 28, North-Holland, Amsterdam-New York, 1981, pp. 603–634. MR 648636
- Ivo Rosenberg, Über die funktionale Vollständigkeit in den mehrwertigen Logiken. Struktur der Funktionen von mehreren Veränderlichen auf endlichen Mengen, Rozpravy Československé Akad. Věd Řada Mat. Přírod. Věd 80 (1970), no. 4, 93 (German). MR 0292647
- I. G. Rosenberg, The set of maximal closed classes of operations on an infinite set $A$ has cardinality $2^{2{}^{\mid }{}^{A\mid }}$, Arch. Math. (Basel) 27 (1976), no. 6, 561–568. MR 429700, DOI 10.1007/BF01224718
- Ivo G. Rosenberg and Dietmar Schweigert, Locally maximal clones, Elektron. Informationsverarb. Kybernet. 18 (1982), no. 7-8, 389–401 (English, with German and Russian summaries). MR 703778
- Andrzej Rosłanowski and Saharon Shelah, Norms on possibilities. I. Forcing with trees and creatures, Mem. Amer. Math. Soc. 141 (1999), no. 671, xii+167. MR 1613600, DOI 10.1090/memo/0671
- Saharon Shelah, On cardinal invariants of the continuum, Axiomatic set theory (Boulder, Colo., 1983) Contemp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 183–207. MR 763901, DOI 10.1090/conm/031/763901
- Ágnes Szendrei, Clones in universal algebra, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 99, Presses de l’Université de Montréal, Montreal, QC, 1986. MR 859550
Additional Information
- Martin Goldstern
- Affiliation: Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8–10/104, 1040 Wien, Austria
- Email: martin.goldstern@tuwien.ac.at
- Saharon Shelah
- Affiliation: Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel — and — Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08854
- MR Author ID: 160185
- ORCID: 0000-0003-0462-3152
- Email: shelah@math.huji.ac.il
- Received by editor(s): August 21, 2012
- Received by editor(s) in revised form: August 5, 2014
- Published electronically: February 29, 2016
- Additional Notes: The first author was supported by FWF grant P17627-N12. The second author was supported by the United States-Israel Binational Science Foundation, grant 2002323, publication 884
- © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 368 (2016), 7551-7577
- MSC (2010): Primary 08A40; Secondary 03E40, 03E50, 03E75
- DOI: https://doi.org/10.1090/tran/6568
- MathSciNet review: 3546775