All creatures great and small
Authors:
Martin Goldstern and Saharon Shelah
Journal:
Trans. Amer. Math. Soc. 368 (2016), 7551-7577
MSC (2010):
Primary 08A40; Secondary 03E40, 03E50, 03E75
DOI:
https://doi.org/10.1090/tran/6568
Published electronically:
February 29, 2016
MathSciNet review:
3546775
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $\lambda$ be an uncountable regular cardinal. Assuming $2^{[\lambda ]}=\lambda ^+$, we show that the clone lattice on a set of size $\lambda$ is not dually atomic.
- V. A. Buevich, A variant of the proof of a completeness criterion for functions of $k$-valued logic, Diskret. Mat. 8 (1996), no. 4, 11–36 (Russian, with Russian summary); English transl., Discrete Math. Appl. 6 (1996), no. 5, 505–530. MR 1447318, DOI 10.1515/dma.1996.6.5.505
- G. P. Gavrilov, Certain conditions for completeness in countable-valued logic, Dokl. Akad. Nauk SSSR 128 (1959), 21–24 (Russian). MR 0107602
- Martin Goldstern and Michael Pinsker, A survey of clones on infinite sets, Algebra Universalis 59 (2008), no. 3-4, 365–403. MR 2470587, DOI 10.1007/s00012-008-2100-2
- Martin Goldstern and Saharon Shelah, Clones on regular cardinals, Fund. Math. 173 (2002), no. 1, 1–20. MR 1899044, DOI 10.4064/fm173-1-1
- Martin Goldstern and Saharon Shelah, Clones from creatures, Trans. Amer. Math. Soc. 357 (2005), no. 9, 3525–3551. MR 2146637, DOI 10.1090/S0002-9947-04-03593-7
- R. Pöschel and L. A. Kalužnin, Funktionen- und Relationenalgebren, Mathematische Monographien [Mathematical Monographs], vol. 15, VEB Deutscher Verlag der Wissenschaften, Berlin, 1979 (German). Ein Kapitel der diskreten Mathematik. [A chapter in discrete mathematics]. MR 543839
- R. W. Quackenbush, A new proof of Rosenberg’s primal algebra characterization theorem, Finite algebra and multiple-valued logic (Szeged, 1979) Colloq. Math. Soc. János Bolyai, vol. 28, North-Holland, Amsterdam-New York, 1981, pp. 603–634. MR 648636
- Ivo Rosenberg, Über die funktionale Vollständigkeit in den mehrwertigen Logiken. Struktur der Funktionen von mehreren Veränderlichen auf endlichen Mengen, Rozpravy Československé Akad. Věd Řada Mat. Přírod. Věd 80 (1970), no. 4, 93 (German). MR 0292647
- I. G. Rosenberg, The set of maximal closed classes of operations on an infinite set $A$ has cardinality $2^{2{}^{\mid }{}^{A\mid }}$, Arch. Math. (Basel) 27 (1976), no. 6, 561–568. MR 429700, DOI 10.1007/BF01224718
- Ivo G. Rosenberg and Dietmar Schweigert, Locally maximal clones, Elektron. Informationsverarb. Kybernet. 18 (1982), no. 7-8, 389–401 (English, with German and Russian summaries). MR 703778
- Andrzej Rosłanowski and Saharon Shelah, Norms on possibilities. I. Forcing with trees and creatures, Mem. Amer. Math. Soc. 141 (1999), no. 671, xii+167. MR 1613600, DOI 10.1090/memo/0671
- Saharon Shelah, On cardinal invariants of the continuum, Axiomatic set theory (Boulder, Colo., 1983) Contemp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 183–207. MR 763901, DOI 10.1090/conm/031/763901
- Ágnes Szendrei, Clones in universal algebra, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 99, Presses de l’Université de Montréal, Montreal, QC, 1986. MR 859550
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 08A40, 03E40, 03E50, 03E75
Retrieve articles in all journals with MSC (2010): 08A40, 03E40, 03E50, 03E75
Additional Information
Martin Goldstern
Affiliation:
Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8–10/104, 1040 Wien, Austria
Email:
martin.goldstern@tuwien.ac.at
Saharon Shelah
Affiliation:
Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel — and — Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08854
MR Author ID:
160185
ORCID:
0000-0003-0462-3152
Email:
shelah@math.huji.ac.il
Keywords:
Precomplete clones,
maximal clones,
clones on infinite sets,
creature forcing,
large creatures,
cardinal arithmetic
Received by editor(s):
August 21, 2012
Received by editor(s) in revised form:
August 5, 2014
Published electronically:
February 29, 2016
Additional Notes:
The first author was supported by FWF grant P17627-N12. The second author was supported by the United States-Israel Binational Science Foundation, grant 2002323, publication 884
Article copyright:
© Copyright 2016
American Mathematical Society