Morse theory and toric vector bundles
HTML articles powered by AMS MathViewer
- by David Treumann PDF
- Trans. Amer. Math. Soc. 369 (2017), 1-29 Request permission
Abstract:
Morelli’s computation of the $K$-theory of a toric variety $X$ associates a polyhedrally constructible function on a real vector space to every equivariant vector bundle $\mathcal {E}$ on $X$. The coherent-constructible correspondence lifts Morelli’s constructible function to a complex of constructible sheaves $\kappa (\mathcal {E})$. We show that certain filtrations of the cohomology of $\kappa (\mathcal {E})$ coming from Morse theory coincide with the Klyachko filtrations of the generic stalk of $\mathcal {E}$. We give Morse-theoretic (i.e. microlocal) conditions for a complex of constructible sheaves to correspond to a vector bundle and to a nef vector bundle.References
- J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603–632. MR 139178, DOI 10.2307/1970213
- Alexander Barvinok, Lattice points, polyhedra, and complexity, Geometric combinatorics, IAS/Park City Math. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2007, pp. 19–62. MR 2383125, DOI 10.1090/pcms/013/02
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Algebraic vector bundles on $\textbf {P}^{n}$ and problems of linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 66–67 (Russian). MR 509387
- Jean-Luc Brylinski, Alberto S. Dubson, and Masaki Kashiwara, Formule de l’indice pour modules holonomes et obstruction d’Euler locale, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), no. 12, 573–576 (French, with English summary). MR 647684
- Michel Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup. (4) 3 (1970), 507–588 (French). MR 284446
- Y. Drozd, “Tame and wild matrix problems,” in Thirteen papers in algebra and number theory, Amer. Math. Soc. Transl. 128 (1985), 31–55.
- Bohan Fang, Chiu-Chu Melissa Liu, David Treumann, and Eric Zaslow, A categorification of Morelli’s theorem, Invent. Math. 186 (2011), no. 1, 79–114. MR 2836052, DOI 10.1007/s00222-011-0315-x
- Mikhail Grinberg and Robert MacPherson, Euler characteristics and Lagrangian intersections, Symplectic geometry and topology (Park City, UT, 1997) IAS/Park City Math. Ser., vol. 7, Amer. Math. Soc., Providence, RI, 1999, pp. 265–293. MR 1702946, DOI 10.1090/pcms/007/07
- H. Hadwiger, Eulers Charakteristik und kombinatorische Geometrie, J. Reine Angew. Math. 194 (1955), 101–110 (German). MR 73221, DOI 10.1515/crll.1955.194.101
- H. Hadwiger, Erweiterter Polyedersatz und Euler-Shephardsche Additionstheoreme, Abh. Math. Sem. Univ. Hamburg 39 (1973), 120–129 (German). MR 331221, DOI 10.1007/BF02992825
- Milena Hering, Mircea Mustaţă, and Sam Payne, Positivity properties of toric vector bundles, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 2, 607–640 (English, with English and French summaries). MR 2667788
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1994. With a chapter in French by Christian Houzel; Corrected reprint of the 1990 original. MR 1299726
- A. A. Klyachko, Equivariant bundles over toric varieties, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 5, 1001–1039, 1135 (Russian); English transl., Math. USSR-Izv. 35 (1990), no. 2, 337–375. MR 1024452, DOI 10.1070/IM1990v035n02ABEH000707
- A. V. Pukhlikov and A. G. Khovanskiĭ, Finitely additive measures of virtual polyhedra, Algebra i Analiz 4 (1992), no. 2, 161–185 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 4 (1993), no. 2, 337–356. MR 1182399
- Peter McMullen, The polytope algebra, Adv. Math. 78 (1989), no. 1, 76–130. MR 1021549, DOI 10.1016/0001-8708(89)90029-7
- Robert Morelli, The $K$-theory of a toric variety, Adv. Math. 100 (1993), no. 2, 154–182. MR 1234308, DOI 10.1006/aima.1993.1032
- Robert Morelli, A theory of polyhedra, Adv. Math. 97 (1993), no. 1, 1–73. MR 1200289, DOI 10.1006/aima.1993.1001
- David Nadler and Eric Zaslow, Constructible sheaves and the Fukaya category, J. Amer. Math. Soc. 22 (2009), no. 1, 233–286. MR 2449059, DOI 10.1090/S0894-0347-08-00612-7
- Sam Payne, Toric vector bundles, branched covers of fans, and the resolution property, J. Algebraic Geom. 18 (2009), no. 1, 1–36. MR 2448277, DOI 10.1090/S1056-3911-08-00485-2
- Sam Payne, Equivariant Chow cohomology of toric varieties, Math. Res. Lett. 13 (2006), no. 1, 29–41. MR 2199564, DOI 10.4310/MRL.2006.v13.n1.a3
- Allen Dudley Shepard, A CELLULAR DESCRIPTION OF THE DERIVED CATEGORY OF A STRATIFIED SPACE, ProQuest LLC, Ann Arbor, MI, 1985. Thesis (Ph.D.)–Brown University. MR 2634247
- Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6); Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. MR 0354655
Additional Information
- David Treumann
- Affiliation: Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02467-3806
- Received by editor(s): August 21, 2012
- Received by editor(s) in revised form: December 27, 2013, June 25, 2014, and July 12, 2014
- Published electronically: August 22, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 1-29
- MSC (2010): Primary 14M25
- DOI: https://doi.org/10.1090/tran/6511
- MathSciNet review: 3557766