Structures of quasi-graphs and $\omega$-limit sets of quasi-graph maps
HTML articles powered by AMS MathViewer
- by Jiehua Mai and Enhui Shi PDF
- Trans. Amer. Math. Soc. 369 (2017), 139-165 Request permission
Abstract:
An arcwise connected compact metric space $X$ is called a quasi-graph if there is a positive integer $N$ with the following property: for every arcwise connected subset $Y$ of $X$, the space $\overline {Y}-Y$ has at most $N$ arcwise connected components. If a quasi-graph $X$ contains no Jordan curve, then $X$ is called a quasi-tree. The structures of quasi-graphs and the dynamics of quasi-graph maps are investigated in this paper. More precisely, the structures of quasi-graphs are explicitly described; some criteria for $\omega$-limit points of quasi-graph maps are obtained; for every quasi-graph map $f$, it is shown that the pseudo-closure of $R(f)$ in the sense of arcwise connectivity is contained in $\omega (f)$; it is shown that $\overline {P(f)}=\overline {R(f)}$ for every quasi-tree map $f$. Here $P(f)$, $R(f)$ and $\omega (f)$ are the periodic point set, the recurrent point set and the $\omega$-limit set of $f$, respectively. These extend some well-known results for interval dynamics.References
- G. Acosta, R. Hernandez-Gutierez, I. Nagmouchi and P. Oprocha, Periodic points and transitivity on dendrites, arXiv:1312.7426[math. DS] (2013).
- Lluís Alsedà, Jaume Llibre, and MichałMisiurewicz, Combinatorial dynamics and entropy in dimension one, 2nd ed., Advanced Series in Nonlinear Dynamics, vol. 5, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. MR 1807264, DOI 10.1142/4205
- L. S. Block and W. A. Coppel, Dynamics in one dimension, Lecture Notes in Mathematics, vol. 1513, Springer-Verlag, Berlin, 1992. MR 1176513, DOI 10.1007/BFb0084762
- Louis Block and Ethan M. Coven, $\omega$-limit sets for maps of the interval, Ergodic Theory Dynam. Systems 6 (1986), no. 3, 335–344. MR 863198, DOI 10.1017/S0143385700003539
- A. M. Blokh, On transitive mappings of one-dimensional branched manifolds, Differential-difference equations and problems of mathematical physics (Russian), Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1984, pp. 3–9, 131 (Russian). MR 884346
- A. M. Blokh, Dynamical systems on one-dimensional branched manifolds. I, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 46 (1986), 8–18 (Russian); English transl., J. Soviet Math. 48 (1990), no. 5, 500–508. MR 865783, DOI 10.1007/BF01095616
- A. M. Blokh, Dynamical systems on one-dimensional branched manifolds. II, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 47 (1987), 67–77 (Russian); English transl., J. Soviet Math. 48 (1990), no. 6, 668–674. MR 916445, DOI 10.1007/BF01094721
- A. M. Blokh, Dynamical systems on one-dimensional branched manifolds. III, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 48 (1987), 32–46 (Russian); English transl., J. Soviet Math. 49 (1990), no. 2, 875–883. MR 916457, DOI 10.1007/BF02205632
- A. M. Blokh, Spectral decomposition, periods of cycles and a conjecture of M. Misiurewicz for graph maps, Ergodic theory and related topics, III (Güstrow, 1990) Lecture Notes in Math., vol. 1514, Springer, Berlin, 1992, pp. 24–31. MR 1179169, DOI 10.1007/BFb0097525
- Alexander M. Blokh, The “spectral” decomposition for one-dimensional maps, Dynamics reported, Dynam. Report. Expositions Dynam. Systems (N.S.), vol. 4, Springer, Berlin, 1995, pp. 1–59. MR 1346496
- Alexander Blokh, Recurrent and periodic points in dendritic Julia sets, Proc. Amer. Math. Soc. 141 (2013), no. 10, 3587–3599. MR 3080181, DOI 10.1090/S0002-9939-2013-11633-3
- Alexander Blokh, A. M. Bruckner, P. D. Humke, and J. Smítal, The space of $\omega$-limit sets of a continuous map of the interval, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1357–1372. MR 1348857, DOI 10.1090/S0002-9947-96-01600-5
- Naotsugu Chinen, Sets of all $\omega$-limit points for one-dimensional maps, Houston J. Math. 30 (2004), no. 4, 1055–1068. MR 2110249
- Hsin Chu and Jin Cheng Xiong, A counterexample in dynamical systems of the interval, Proc. Amer. Math. Soc. 97 (1986), no. 2, 361–366. MR 835899, DOI 10.1090/S0002-9939-1986-0835899-0
- Ethan M. Coven and G. A. Hedlund, $\bar P=\bar R$ for maps of the interval, Proc. Amer. Math. Soc. 79 (1980), no. 2, 316–318. MR 565362, DOI 10.1090/S0002-9939-1980-0565362-0
- Logan Hoehn and Christopher Mouron, Hierarchies of chaotic maps on continua, Ergodic Theory Dynam. Systems 34 (2014), no. 6, 1897–1913. MR 3272777, DOI 10.1017/etds.2013.32
- Jaume Llibre and MichałMisiurewicz, Horseshoes, entropy and periods for graph maps, Topology 32 (1993), no. 3, 649–664. MR 1231969, DOI 10.1016/0040-9383(93)90014-M
- Jie-Hua Mai and Song Shao, $\overline R=R\cup \overline P$ for graph maps, J. Math. Anal. Appl. 350 (2009), no. 1, 9–11. MR 2476886, DOI 10.1016/j.jmaa.2008.09.006
- Jiehua Mai and Enhui Shi, $\overline R=\overline P$ for maps of dendrites $X$ with $\textrm {Card}(\textrm {End}(X))<c$, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 19 (2009), no. 4, 1391–1396. MR 2537728, DOI 10.1142/S021812740902372X
- Jiehua Mai and Taixiang Sun, The $\omega$-limit set of a graph map, Topology Appl. 154 (2007), no. 11, 2306–2311. MR 2328013, DOI 10.1016/j.topol.2007.03.008
- Jie-hua Mai and Tai-xiang Sun, Non-wandering points and the depth for graph maps, Sci. China Ser. A 50 (2007), no. 12, 1818–1824. MR 2390491, DOI 10.1007/s11425-007-0139-8
- James R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975. MR 0464128
- Sam B. Nadler Jr., Continuum theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker, Inc., New York, 1992. An introduction. MR 1192552
- Zbigniew Nitecki, Periodic and limit orbits and the depth of the center for piecewise monotone interval maps, Proc. Amer. Math. Soc. 80 (1980), no. 3, 511–514. MR 581016, DOI 10.1090/S0002-9939-1980-0581016-9
- Zbigniew Nitecki, Topological dynamics on the interval, Ergodic theory and dynamical systems, II (College Park, Md., 1979/1980), Progr. Math., vol. 21, Birkhäuser, Boston, Mass., 1982, pp. 1–73. MR 670074
- O. M. Šarkovs′kiĭ, Fixed points and the center of a continuous mapping of the line into itself, Dopovidi Akad. Nauk Ukraïn. RSR 1964 (1964), 865–868 (Ukrainian, with Russian and English summaries). MR 0165178
- O. M. Šarkovs′kiĭ, Co-existence of cycles of a continuous mapping of the line into itself, Ukrain. Mat. . 16 (1964), 61–71 (Russian, with English summary). MR 0159905
- O. M. Šarkovs′kiĭ, On a theorem of G. D. Birkhoff, Dopovīdī Akad. Nauk Ukraïn. RSR Ser. A 1967 (1967), 429–432 (Ukrainian, with Russian and English summaries). MR 0212781
- Vladimír Špitalský, Transitive dendrite map with infinite decomposition ideal, Discrete Contin. Dyn. Syst. 35 (2015), no. 2, 771–792. MR 3267423, DOI 10.3934/dcds.2015.35.771
- Jin Cheng Xiong, Xiang Dong Ye, Zhi Qiang Zhang, and Jun Huang, Some dynamical properties of continuous maps on the Warsaw circle, Acta Math. Sinica (Chinese Ser.) 39 (1996), no. 3, 294–299 (Chinese, with English and Chinese summaries). MR 1413349
- Xiang Dong Ye, The centre and the depth of the centre of a tree map, Bull. Austral. Math. Soc. 48 (1993), no. 2, 347–350. MR 1238808, DOI 10.1017/S0004972700015768
- Lai Sang Young, A closing lemma on the interval, Invent. Math. 54 (1979), no. 2, 179–187. MR 550182, DOI 10.1007/BF01408935
- Fanping Zeng, Hong Mo, Wenjing Guo, and Qiju Gao, $\omega$-limit set of a tree map, Northeast. Math. J. 17 (2001), no. 3, 333–339. MR 2011841
Additional Information
- Jiehua Mai
- Affiliation: Institute of Mathematics, Shantou University, Shantou, Guangdong 515063, People’s Republic of China
- Email: jhmai@stu.edu.cn
- Enhui Shi
- Affiliation: Department of Mathematics, Soochow University, Suzhou, Jiangsu, 215006, People’s Republic of China
- MR Author ID: 710093
- Email: ehshi@suda.edu.cn
- Received by editor(s): February 23, 2013
- Received by editor(s) in revised form: July 23, 2014, and December 9, 2014
- Published electronically: March 21, 2016
- Additional Notes: The second author is the corresponding author
- © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 139-165
- MSC (2010): Primary 37E99, 54H20
- DOI: https://doi.org/10.1090/tran/6627
- MathSciNet review: 3557770