## Skew Calabi-Yau triangulated categories and Frobenius Ext-algebras

HTML articles powered by AMS MathViewer

- by Manuel Reyes, Daniel Rogalski and James J. Zhang PDF
- Trans. Amer. Math. Soc.
**369**(2017), 309-340 Request permission

## Abstract:

We investigate conditions that are sufficient to make the Ext-algebra of an object in a (triangulated) category into a Frobenius algebra, and compute the corresponding Nakayama automorphism. As an application, we prove the conjecture that $\mathrm {hdet}(\mu _A) = 1$ for any noetherian Artin-Schelter regular (hence skew Calabi-Yau) algebra $A$.## References

- Michael Artin and William F. Schelter,
*Graded algebras of global dimension $3$*, Adv. in Math.**66**(1987), no. 2, 171–216. MR**917738**, DOI 10.1016/0001-8708(87)90034-X - M. Artin and J. J. Zhang,
*Noncommutative projective schemes*, Adv. Math.**109**(1994), no. 2, 228–287. MR**1304753**, DOI 10.1006/aima.1994.1087 - L. L. Avramov, H.-B. Foxby, and S. Halperin,
*Differential graded homological algebra*, preprint. - Roland Berger and Nicolas Marconnet,
*Koszul and Gorenstein properties for homogeneous algebras*, Algebr. Represent. Theory**9**(2006), no. 1, 67–97. MR**2233117**, DOI 10.1007/s10468-005-9002-1 - Raf Bocklandt,
*Graded Calabi Yau algebras of dimension 3*, J. Pure Appl. Algebra**212**(2008), no. 1, 14–32. MR**2355031**, DOI 10.1016/j.jpaa.2007.03.009 - A. I. Bondal and M. M. Kapranov,
*Representable functors, Serre functors, and reconstructions*, Izv. Akad. Nauk SSSR Ser. Mat.**53**(1989), no. 6, 1183–1205, 1337 (Russian); English transl., Math. USSR-Izv.**35**(1990), no. 3, 519–541. MR**1039961**, DOI 10.1070/IM1990v035n03ABEH000716 - Kenneth Chan, Chelsea Walton, and James Zhang,
*Hopf actions and Nakayama automorphisms*, J. Algebra**409**(2014), 26–53. MR**3198834**, DOI 10.1016/j.jalgebra.2014.04.003 - V. Ginzburg,
*Calabi-Yau algebras*, arXiv:math/0612139 (2006). - Ji-Wei He, Fred Van Oystaeyen, and Yinhuo Zhang,
*Hopf algebra actions on differential graded algebras and applications*, Bull. Belg. Math. Soc. Simon Stevin**18**(2011), no. 1, 99–111. MR**2809906** - J. P. Jans,
*On Frobenius algebras*, Ann. of Math. (2)**69**(1959), 392–407. MR**104711**, DOI 10.2307/1970189 - N. Jing and J. J. Zhang,
*Gorensteinness of invariant subrings of quantum algebras*, J. Algebra**221**(1999), no. 2, 669–691. MR**1728404**, DOI 10.1006/jabr.1999.8023 - Bernhard Keller,
*Calabi-Yau triangulated categories*, Trends in representation theory of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 467–489. MR**2484733**, DOI 10.4171/062-1/11 - E. Kirkman, J. Kuzmanovich, and J. J. Zhang,
*Gorenstein subrings of invariants under Hopf algebra actions*, J. Algebra**322**(2009), no. 10, 3640–3669. MR**2568355**, DOI 10.1016/j.jalgebra.2009.08.018 - Henning Krause,
*Derived categories, resolutions, and Brown representability*, Interactions between homotopy theory and algebra, Contemp. Math., vol. 436, Amer. Math. Soc., Providence, RI, 2007, pp. 101–139. MR**2355771**, DOI 10.1090/conm/436/08405 - Di Ming Lu, John H. Palmieri, Quan Shui Wu, and James J. Zhang,
*Koszul equivalences in $A_\infty$-algebras*, New York J. Math.**14**(2008), 325–378. MR**2430869** - D. Murfet,
*Triangulated Categories Part I*, notes available online at http://therisingsea.org/notes/TriangulatedCategories.pdf. - I. Reiten and M. Van den Bergh,
*Noetherian hereditary abelian categories satisfying Serre duality*, J. Amer. Math. Soc.**15**(2002), no. 2, 295–366. MR**1887637**, DOI 10.1090/S0894-0347-02-00387-9 - Manuel Reyes, Daniel Rogalski, and James J. Zhang,
*Skew Calabi-Yau algebras and homological identities*, Adv. Math.**264**(2014), 308–354. MR**3250287**, DOI 10.1016/j.aim.2014.07.010 - S. Paul Smith,
*Some finite-dimensional algebras related to elliptic curves*, Representation theory of algebras and related topics (Mexico City, 1994) CMS Conf. Proc., vol. 19, Amer. Math. Soc., Providence, RI, 1996, pp. 315–348. MR**1388568** - Michel van den Bergh,
*Existence theorems for dualizing complexes over non-commutative graded and filtered rings*, J. Algebra**195**(1997), no. 2, 662–679. MR**1469646**, DOI 10.1006/jabr.1997.7052 - Amnon Yekutieli and James J. Zhang,
*Rings with Auslander dualizing complexes*, J. Algebra**213**(1999), no. 1, 1–51. MR**1674648**, DOI 10.1006/jabr.1998.7657 - J. J. Zhang,
*Twisted graded algebras and equivalences of graded categories*, Proc. London Math. Soc. (3)**72**(1996), no. 2, 281–311. MR**1367080**, DOI 10.1112/plms/s3-72.2.281

## Additional Information

**Manuel Reyes**- Affiliation: Department of Mathematics, Bowdoin College, 8600 College Station, Brunswick, Maine 04011-8486
- MR Author ID: 835471
- ORCID: 0000-0002-5068-7205
- Email: reyes@bowdoin.edu
**Daniel Rogalski**- Affiliation: Department of Mathematics, University of California San Diego, 9500 Gilman Drive # 0112, La Jolla, California 92093-0112
- MR Author ID: 734142
- Email: drogalsk@math.ucsd.edu
**James J. Zhang**- Affiliation: Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195-4350
- MR Author ID: 314509
- Email: zhang@math.washington.edu
- Received by editor(s): August 18, 2014
- Received by editor(s) in revised form: December 23, 2014
- Published electronically: March 18, 2016
- Additional Notes: This material was based upon work supported by the National Science Foundation under Grant No. 0932078 000, while the authors were in residence at the Mathematical Science Research Institute (MSRI) in Berkeley, California, for the workshop titled “Noncommutative Algebraic Geometry and Representation Theory” during the year of 2013. The authors were also supported by the respective National Science Foundation grants DMS-1407152, DMS-1201572, and DMS-0855743 & DMS-1402863. The first author was supported by an AMS-Simons Travel Grant
- © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**369**(2017), 309-340 - MSC (2010): Primary 18E30, 16E35; Secondary 16E65, 16L60, 16S38
- DOI: https://doi.org/10.1090/tran/6640
- MathSciNet review: 3557775