## The predual and John-Nirenberg inequalities on generalized BMO martingale spaces

HTML articles powered by AMS MathViewer

- by Yong Jiao, Lian Wu, Anming Yang and Rui Yi PDF
- Trans. Amer. Math. Soc.
**369**(2017), 537-553 Request permission

## Abstract:

In this paper we introduce the generalized BMO martingale spaces by stopping time sequences, which enable us to characterize the dual spaces of martingale Hardy-Lorentz spaces $H_{p,q}^s$ for $0<p\leq 1, 1<q<\infty$. Moreover, by duality we obtain a John-Nirenberg theorem for the generalized BMO martingale spaces when the stochastic basis is regular. We also extend the boundedness of fractional integrals to martingale Hardy-Lorentz spaces.## References

- Wael Abu-Shammala and Alberto Torchinsky,
*The Hardy-Lorentz spaces $H^{p,q}(\Bbb R^n)$*, Studia Math.**182**(2007), no. 3, 283–294. MR**2360632**, DOI 10.4064/sm182-3-7 - Richard F. Bass,
*Probabilistic techniques in analysis*, Probability and its Applications (New York), Springer-Verlag, New York, 1995. MR**1329542** - Colin Bennett and Robert Sharpley,
*Interpolation of operators*, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR**928802** - J.-A. Chao and H. Ombe,
*Commutators on dyadic martingales*, Proc. Japan Acad. Ser. A Math. Sci.**61**(1985), no. 2, 35–38. MR**798032** - John B. Conway,
*A course in functional analysis*, Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1985. MR**768926**, DOI 10.1007/978-1-4757-3828-5 - Charles Fefferman,
*Characterizations of bounded mean oscillation*, Bull. Amer. Math. Soc.**77**(1971), 587–588. MR**280994**, DOI 10.1090/S0002-9904-1971-12763-5 - R. Fefferman,
*Bounded mean oscillation on the polydisk*, Ann. of Math. (2)**110**(1979), no. 2, 395–406. MR**549492**, DOI 10.2307/1971231 - Adriano M. Garsia,
*Martingale inequalities: Seminar notes on recent progress*, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1973. MR**0448538** - Loukas Grafakos,
*Classical Fourier analysis*, 2nd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR**2445437** - Jiao Yong, Peng Lihua, and Liu Peide,
*Atomic decompositions of Lorentz martingale spaces and applications*, J. Funct. Spaces Appl.**7**(2009), no. 2, 153–166. MR**2541232**, DOI 10.1155/2009/465079 - Yong Jiao, Lian Wu, and Mihai Popa,
*Operator-valued martingale transforms in rearrangement invariant spaces and applications*, Sci. China Math.**56**(2013), no. 4, 831–844. MR**3034845**, DOI 10.1007/s11425-013-4570-8 - Yong Jiao, Guangheng Xie, and Dejian Zhou,
*Dual spaces and John-Nirenberg inequalities of martingale Hardy-Lorentz-Karamata spaces*, Q. J. Math.**66**(2015), no. 2, 605–623. MR**3356840**, DOI 10.1093/qmath/hav003 - F. John and L. Nirenberg,
*On functions of bounded mean oscillation*, Comm. Pure Appl. Math.**14**(1961), 415–426. MR**131498**, DOI 10.1002/cpa.3160140317 - Peide Liu and Youliang Hou,
*Atomic decompositions of Banach-space-valued martingales*, Sci. China Ser. A**42**(1999), no. 1, 38–47. MR**1692138**, DOI 10.1007/BF02872048 - Rui Lin Long,
*Martingale spaces and inequalities*, Peking University Press, Beijing; Friedr. Vieweg & Sohn, Braunschweig, 1993. MR**1224450**, DOI 10.1007/978-3-322-99266-6 - Tao Ma and Peide Liu,
*Atomic decompositions and duals of weak Hardy spaces of $B$-valued martingales*, Acta Math. Sci. Ser. B (Engl. Ed.)**29**(2009), no. 5, 1439–1452. MR**2567127**, DOI 10.1016/S0252-9602(09)60116-8 - Takashi Miyamoto, Eiichi Nakai, and Gaku Sadasue,
*Martingale Orlicz-Hardy spaces*, Math. Nachr.**285**(2012), no. 5-6, 670–686. MR**2902839**, DOI 10.1002/mana.201000109 - Eiichi Nakai and Gaku Sadasue,
*Martingale Morrey-Campanato spaces and fractional integrals*, J. Funct. Spaces Appl. , posted on (2012), Art. ID 673929, 29. MR**2944703**, DOI 10.1155/2012/673929 - Karl Endel Petersen,
*Brownian motion, Hardy spaces and bounded mean oscillation*, London Mathematical Society Lecture Note Series, No. 28, Cambridge University Press, Cambridge-New York-Melbourne, 1977. MR**0651556** - Gaku Sadasue,
*Fractional integrals on martingale Hardy spaces for $0<p\le 1$*, Mem. Osaka Kyoiku Univ. Ser. III Nat. Sci. Appl. Sci.**60**(2011), no. 1, 1–7 (English, with English and Japanese summaries). MR**2963747** - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095** - F. Weisz,
*Martingale Hardy spaces for $0<p\leq 1$*, Probab. Theory Related Fields**84**(1990), no. 3, 361–376. MR**1035662**, DOI 10.1007/BF01197890 - Ferenc Weisz,
*Martingale Hardy spaces and their applications in Fourier analysis*, Lecture Notes in Mathematics, vol. 1568, Springer-Verlag, Berlin, 1994. MR**1320508**, DOI 10.1007/BFb0073448

## Additional Information

**Yong Jiao**- Affiliation: School of Mathematics and Statistics, Central South University, Changsha 410085, People’s Republic of China
- MR Author ID: 828053
- Email: jiaoyong@csu.edu.cn
**Lian Wu**- Affiliation: School of Mathematics and Statistics, Central South University, Changsha 410085, People’s Republic of China
**Anming Yang**- Affiliation: School of Mathematics and Statistics, Central South University, Changsha 410085, People’s Republic of China
**Rui Yi**- Received by editor(s): August 20, 2014
- Received by editor(s) in revised form: January 9, 2015
- Published electronically: April 14, 2016
- Additional Notes: The first author was supported by NSFC (11471337), Hunan Provincial Natural Science Foundation(14JJ1004) and The International Postdoctoral Exchange Fellowship Program
- © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**369**(2017), 537-553 - MSC (2010): Primary 60G46; Secondary 60G42
- DOI: https://doi.org/10.1090/tran/6657
- MathSciNet review: 3557784