A metric approach to limit operators
HTML articles powered by AMS MathViewer
- by Ján Špakula and Rufus Willett PDF
- Trans. Amer. Math. Soc. 369 (2017), 263-308 Request permission
Abstract:
We extend the limit operator machinery of Rabinovich, Roch, and Silbermann from $\mathbb {Z}^N$ to (bounded geometry, strongly) discrete metric spaces. We do not assume the presence of any group structure or action on our metric spaces. Using this machinery and recent ideas of Lindner and Seidel, we show that if a metric space $X$ has Yu’s property A, then a band-dominated operator on $X$ is Fredholm if and only if all of its limit operators are invertible. We also show that this always fails for metric spaces without property A.References
- Goulnara Arzhantseva, Erik Guentner, and Ján Špakula, Coarse non-amenability and coarse embeddings, Geom. Funct. Anal. 22 (2012), no. 1, 22–36. MR 2899681, DOI 10.1007/s00039-012-0145-z
- J. Brodzki, S. J. Campbell, E. Guentner, G. A. Niblo, and N. J. Wright, Property A and $\rm CAT(0)$ cube complexes, J. Funct. Anal. 256 (2009), no. 5, 1408–1431. MR 2490224, DOI 10.1016/j.jfa.2008.10.018
- Jacek Brodzki, Graham A. Niblo, Ján Špakula, Rufus Willett, and Nick Wright, Uniform local amenability, J. Noncommut. Geom. 7 (2013), no. 2, 583–603. MR 3054308, DOI 10.4171/JNCG/128
- Nathanial P. Brown and Narutaka Ozawa, $C^*$-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, 2008. MR 2391387, DOI 10.1090/gsm/088
- Xiaoman Chen, Romain Tessera, Xianjin Wang, and Guoliang Yu, Metric sparsification and operator norm localization, Adv. Math. 218 (2008), no. 5, 1496–1511. MR 2419930, DOI 10.1016/j.aim.2008.03.016
- Marius Dadarlat and Erik Guentner, Uniform embeddability of relatively hyperbolic groups, J. Reine Angew. Math. 612 (2007), 1–15. MR 2364071, DOI 10.1515/CRELLE.2007.081
- Vladimir Georgescu, On the structure of the essential spectrum of elliptic operators on metric spaces, J. Funct. Anal. 260 (2011), no. 6, 1734–1765. MR 2754891, DOI 10.1016/j.jfa.2010.12.025
- Erik Guentner, Nigel Higson, and Shmuel Weinberger, The Novikov conjecture for linear groups, Publ. Math. Inst. Hautes Études Sci. 101 (2005), 243–268. MR 2217050, DOI 10.1007/s10240-005-0030-5
- Marko Lindner and Markus Seidel, An affirmative answer to a core issue on limit operators, J. Funct. Anal. 267 (2014), no. 3, 901–917. MR 3212726, DOI 10.1016/j.jfa.2014.03.002
- Piotr W. Nowak and Guoliang Yu, Large scale geometry, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2012. MR 2986138, DOI 10.4171/112
- Hervé Oyono-Oyono and Guoliang Yu, $K$-theory for the maximal Roe algebra of certain expanders, J. Funct. Anal. 257 (2009), no. 10, 3239–3292. MR 2568691, DOI 10.1016/j.jfa.2009.04.017
- Vladimir Rabinovich, Steffen Roch, and Bernd Silbermann, Limit operators and their applications in operator theory, Operator Theory: Advances and Applications, vol. 150, Birkhäuser Verlag, Basel, 2004. MR 2075882, DOI 10.1007/978-3-0348-7911-8
- Jean Renault, $C^\star$-algebras and dynamical systems, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2009. 27$^\textrm {o}$ Colóquio Brasileiro de Matemática. [27th Brazilian Mathematics Colloquium]. MR 2536186
- John Roe, Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Amer. Math. Soc. 104 (1993), no. 497, x+90. MR 1147350, DOI 10.1090/memo/0497
- John Roe, Lectures on coarse geometry, University Lecture Series, vol. 31, American Mathematical Society, Providence, RI, 2003. MR 2007488, DOI 10.1090/ulect/031
- John Roe, Band-dominated Fredholm operators on discrete groups, Integral Equations Operator Theory 51 (2005), no. 3, 411–416. MR 2126819, DOI 10.1007/s00020-004-1326-4
- John Roe, Hyperbolic groups have finite asymptotic dimension, Proc. Amer. Math. Soc. 133 (2005), no. 9, 2489–2490. MR 2146189, DOI 10.1090/S0002-9939-05-08138-4
- John Roe and Rufus Willett, Ghostbusting and property A, J. Funct. Anal. 266 (2014), no. 3, 1674–1684. MR 3146831, DOI 10.1016/j.jfa.2013.07.004
- Hiroki Sako, Property A and the operator norm localization property for discrete metric spaces, J. Reine Angew. Math. 690 (2014), 207–216. MR 3200343, DOI 10.1515/crelle-2012-0065
- G. Skandalis, J. L. Tu, and G. Yu, The coarse Baum-Connes conjecture and groupoids, Topology 41 (2002), no. 4, 807–834. MR 1905840, DOI 10.1016/S0040-9383(01)00004-0
- Rufus Willett, Some notes on property A, Limits of graphs in group theory and computer science, EPFL Press, Lausanne, 2009, pp. 191–281. MR 2562146
- Guoliang Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000), no. 1, 201–240. MR 1728880, DOI 10.1007/s002229900032
Additional Information
- Ján Špakula
- Affiliation: Mathematical Sciences, University of Southampton, SO17 1BJ, United Kingdom
- MR Author ID: 751861
- Email: jan.spakula@soton.ac.uk
- Rufus Willett
- Affiliation: Department of Mathematics, 2565 McCarthy Mall, University of Hawai\kern.05em’\kern.05emi at Mānoa, Honolulu, Hawaii 96822
- MR Author ID: 882807
- Email: rufus.willett@hawaii.edu
- Received by editor(s): September 11, 2014
- Received by editor(s) in revised form: December 18, 2014
- Published electronically: March 2, 2016
- Additional Notes: The second author was partially supported by the US NSF
- © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 263-308
- MSC (2010): Primary 47A53; Secondary 30Lxx, 46L85, 47B36
- DOI: https://doi.org/10.1090/tran/6660
- MathSciNet review: 3557774