Orbifolds of symplectic fermion algebras
HTML articles powered by AMS MathViewer
- by Thomas Creutzig and Andrew R. Linshaw PDF
- Trans. Amer. Math. Soc. 369 (2017), 467-494 Request permission
Abstract:
We present a systematic study of the orbifolds of the rank $n$ symplectic fermion algebra $\mathcal {A}(n)$, which has full automorphism group $Sp(2n)$. First, we show that $\mathcal {A}(n)^{Sp(2n)}$ and $\mathcal {A}(n)^{GL(n)}$ are $\mathcal {W}$-algebras of type $\mathcal {W}(2,4,\dots , 2n)$ and $\mathcal {W}(2,3,\dots , 2n+1)$, respectively. Using these results, we find minimal strong finite generating sets for $\mathcal {A}(mn)^{Sp(2n)}$ and $\mathcal {A}(mn)^{GL(n)}$ for all $m,n\geq 1$. We compute the characters of the irreducible representations of $\mathcal {A}(mn)^{Sp(2n)\times SO(m)}$ and $\mathcal {A}(mn)^{GL(n)\times GL(m)}$ appearing inside $\mathcal {A}(mn)$, and we express these characters using partial theta functions. Finally, we give a complete solution to the Hilbert problem for $\mathcal {A}(n)$; we show that for any reductive group $G$ of automorphisms, $\mathcal {A}(n)^G$ is strongly finitely generatedReferences
- Toshiyuki Abe, A ${\Bbb Z}_2$-orbifold model of the symplectic fermionic vertex operator superalgebra, Math. Z. 255 (2007), no. 4, 755–792. MR 2274534, DOI 10.1007/s00209-006-0048-5
- Toshiyuki Abe, Geoffrey Buhl, and Chongying Dong, Rationality, regularity, and $C_2$-cofiniteness, Trans. Amer. Math. Soc. 356 (2004), no. 8, 3391–3402. MR 2052955, DOI 10.1090/S0002-9947-03-03413-5
- Claudia Alfes and Thomas Creutzig, The mock modular data of a family of superalgebras, Proc. Amer. Math. Soc. 142 (2014), no. 7, 2265–2280. MR 3195752, DOI 10.1090/S0002-9939-2014-11959-9
- Dražen Adamović and Antun Milas, On the triplet vertex algebra $\scr W(p)$, Adv. Math. 217 (2008), no. 6, 2664–2699. MR 2397463, DOI 10.1016/j.aim.2007.11.012
- Tomoyuki Arakawa, Rationality of Bershadsky-Polyakov vertex algebras, Comm. Math. Phys. 323 (2013), no. 2, 627–633. MR 3096533, DOI 10.1007/s00220-013-1780-4
- Tomoyuki Arakawa, Rationality of $W$-algebras: principal nilpotent cases, Ann. of Math. (2) 182 (2015), no. 2, 565–604. MR 3418525, DOI 10.4007/annals.2015.182.2.4
- Bojko Bakalov and Victor G. Kac, Field algebras, Int. Math. Res. Not. 3 (2003), 123–159. MR 1932531, DOI 10.1155/S1073792803204232
- Richard E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068–3071. MR 843307, DOI 10.1073/pnas.83.10.3068
- Kathrin Bringmann, Thomas Creutzig, and Larry Rolen, Negative index Jacobi forms and quantum modular forms, Res. Math. Sci. 1 (2014), Art. 11, 32. MR 3375646, DOI 10.1186/s40687-014-0011-8
- K. Bringmann and A. Milas, $W$-algebras, False theta series and quantum modular forms, Part I, submitted.
- T. Creutzig and A. Linshaw, Cosets of affine vertex algebras inside larger structures, arXiv:1407.8512.
- Thomas Creutzig and Antun Milas, False theta functions and the Verlinde formula, Adv. Math. 262 (2014), 520–545. MR 3228436, DOI 10.1016/j.aim.2014.05.018
- T. Creutzig, A. Milas and S. Wood, On regularised quantum dimensions of the singlet vertex operator algebra and false theta functions, arXiv:1411.3282 [math.QA].
- Thomas Creutzig and David Ridout, Logarithmic conformal field theory: beyond an introduction, J. Phys. A 46 (2013), no. 49, 494006, 72. MR 3146012, DOI 10.1088/1751-8113/46/49/494006
- Shun-Jen Cheng and Weiqiang Wang, Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics, vol. 144, American Mathematical Society, Providence, RI, 2012. MR 3012224, DOI 10.1090/gsm/144
- Alberto De Sole and Victor G. Kac, Finite vs affine $W$-algebras, Jpn. J. Math. 1 (2006), no. 1, 137–261. MR 2261064, DOI 10.1007/s11537-006-0505-2
- Chongying Dong, Vertex algebras associated with even lattices, J. Algebra 161 (1993), no. 1, 245–265. MR 1245855, DOI 10.1006/jabr.1993.1217
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Compact automorphism groups of vertex operator algebras, Internat. Math. Res. Notices 18 (1996), 913–921. MR 1420556, DOI 10.1155/S1073792896000566
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Regularity of rational vertex operator algebras, Adv. Math. 132 (1997), no. 1, 148–166. MR 1488241, DOI 10.1006/aima.1997.1681
- Michael A. I. Flohr, On modular invariant partition functions of conformal field theories with logarithmic operators, Internat. J. Modern Phys. A 11 (1996), no. 22, 4147–4172. MR 1403683, DOI 10.1142/S0217751X96001954
- Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, vol. 88, American Mathematical Society, Providence, RI, 2001. MR 1849359, DOI 10.1090/surv/088
- B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, and I. Yu. Tipunin, Logarithmic extensions of minimal models: characters and modular transformations, Nuclear Phys. B 757 (2006), no. 3, 303–343. MR 2275182, DOI 10.1016/j.nuclphysb.2006.09.019
- Edward Frenkel, Victor Kac, and Minoru Wakimoto, Characters and fusion rules for $W$-algebras via quantized Drinfel′d-Sokolov reduction, Comm. Math. Phys. 147 (1992), no. 2, 295–328. MR 1174415
- Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026
- Igor B. Frenkel and Yongchang Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), no. 1, 123–168. MR 1159433, DOI 10.1215/S0012-7094-92-06604-X
- Daniel Friedan, Emil Martinec, and Stephen Shenker, Conformal invariance, supersymmetry and string theory, Nuclear Phys. B 271 (1986), no. 1, 93–165. MR 845945, DOI 10.1016/0550-3213(86)90356-1
- P. Goddard, A. Kent, and D. Olive, Virasoro algebras and coset space models, Phys. Lett. B 152 (1985), no. 1-2, 88–92. MR 778819, DOI 10.1016/0370-2693(85)91145-1
- Maria Gorelik, Weyl denominator identity for finite-dimensional Lie superalgebras, Highlights in Lie algebraic methods, Progr. Math., vol. 295, Birkhäuser/Springer, New York, 2012, pp. 167–188. MR 2866851, DOI 10.1007/978-0-8176-8274-3_{7}
- David Hilbert, Ueber die Theorie der algebraischen Formen, Math. Ann. 36 (1890), no. 4, 473–534 (German). MR 1510634, DOI 10.1007/BF01208503
- David Hilbert, Ueber die vollen Invariantensysteme, Math. Ann. 42 (1893), no. 3, 313–373 (German). MR 1510781, DOI 10.1007/BF01444162
- Victor Kac, Vertex algebras for beginners, 2nd ed., University Lecture Series, vol. 10, American Mathematical Society, Providence, RI, 1998. MR 1651389, DOI 10.1090/ulect/010
- H. G. Kausch, Extended conformal algebras generated by a multiplet of primary fields, Phys. Lett. B 259 (1991), no. 4, 448–455. MR 1107489, DOI 10.1016/0370-2693(91)91655-F
- Horst G. Kausch, Symplectic fermions, Nuclear Phys. B 583 (2000), no. 3, 513–541. MR 1779271, DOI 10.1016/S0550-3213(00)00295-9
- Victor G. Kac and Dale H. Peterson, Spin and wedge representations of infinite-dimensional Lie algebras and groups, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 6, 3308–3312. MR 619827, DOI 10.1073/pnas.78.6.3308
- Victor Kac and Andrey Radul, Representation theory of the vertex algebra $W_{1+\infty }$, Transform. Groups 1 (1996), no. 1-2, 41–70. MR 1390749, DOI 10.1007/BF02587735
- Victor Kac, Shi-Shyr Roan, and Minoru Wakimoto, Quantum reduction for affine superalgebras, Comm. Math. Phys. 241 (2003), no. 2-3, 307–342. MR 2013802, DOI 10.1007/s00220-003-0926-1
- Victor G. Kac and Minoru Wakimoto, Integrable highest weight modules over affine superalgebras and Appell’s function, Comm. Math. Phys. 215 (2001), no. 3, 631–682. MR 1810948, DOI 10.1007/s002200000315
- Victor G. Kac and Minoru Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 415–456. MR 1327543, DOI 10.1007/978-1-4612-0261-5_{1}5
- Victor G. Kac, Weiqiang Wang, and Catherine H. Yan, Quasifinite representations of classical Lie subalgebras of $\scr W_{1+\infty }$, Adv. Math. 139 (1998), no. 1, 56–140. MR 1652526, DOI 10.1006/aima.1998.1753
- Hai-Sheng Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra 109 (1996), no. 2, 143–195. MR 1387738, DOI 10.1016/0022-4049(95)00079-8
- Haisheng Li, Vertex algebras and vertex Poisson algebras, Commun. Contemp. Math. 6 (2004), no. 1, 61–110. MR 2048777, DOI 10.1142/S0219199704001264
- Bong H. Lian and Andrew R. Linshaw, Howe pairs in the theory of vertex algebras, J. Algebra 317 (2007), no. 1, 111–152. MR 2360143, DOI 10.1016/j.jalgebra.2007.07.002
- Andrew R. Linshaw, Invariant theory and the $\scr W_{1+\infty }$ algebra with negative integral central charge, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 6, 1737–1768. MR 2835328, DOI 10.4171/JEMS/292
- Andrew R. Linshaw, A Hilbert theorem for vertex algebras, Transform. Groups 15 (2010), no. 2, 427–448. MR 2657448, DOI 10.1007/s00031-010-9087-4
- Andrew R. Linshaw, Invariant theory and the Heisenberg vertex algebra, Int. Math. Res. Not. IMRN 17 (2012), 4014–4050. MR 2972547, DOI 10.1093/imrn/rnr171
- Andrew R. Linshaw, Invariant subalgebras of affine vertex algebras, Adv. Math. 234 (2013), 61–84. MR 3003925, DOI 10.1016/j.aim.2012.10.015
- A. Linshaw, The structure of the Kac-Wang-Yan algebra, Comm. Math. Phys. DOI 10.1007/s00220-015-2502-x, published online 30 November 2015.
- Bong H. Lian and Gregg J. Zuckerman, Commutative quantum operator algebras, J. Pure Appl. Algebra 100 (1995), no. 1-3, 117–139. MR 1344847, DOI 10.1016/0022-4049(95)00053-Y
- M. Miyamoto, $C_1$-cofiniteness and fusion products for vertex operator algebras, Conformal Field Theories and Tensor Categories, Proceedings of a Workshop Held at Beijing International Center for Mathematical Research, Mathematical Lectures from Peking University, pp. 271-279 (2014).
- Alexander Sergeev, An analog of the classical invariant theory for Lie superalgebras. I, II, Michigan Math. J. 49 (2001), no. 1, 113–146, 147–168. MR 1827078, DOI 10.1307/mmj/1008719038
- Alexander Sergeev, An analog of the classical invariant theory for Lie superalgebras. I, II, Michigan Math. J. 49 (2001), no. 1, 113–146, 147–168. MR 1827078, DOI 10.1307/mmj/1008719038
- Akihiro Tsuchiya and Simon Wood, On the extended $W$-algebra of type ${\mathfrak {sl}}_2$ at positive rational level, Int. Math. Res. Not. IMRN 14 (2015), 5357–5435. MR 3384444, DOI 10.1093/imrn/rnu090
- Weiqiang Wang, Rationality of Virasoro vertex operator algebras, Internat. Math. Res. Notices 7 (1993), 197–211. MR 1230296, DOI 10.1155/S1073792893000212
- Weiqiang Wang, Duality in infinite-dimensional Fock representations, Commun. Contemp. Math. 1 (1999), no. 2, 155–199. MR 1696098, DOI 10.1142/S0219199799000080
- Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
- Yongchang Zhu, Vertex operator algebras, elliptic functions and modular forms, ProQuest LLC, Ann Arbor, MI, 1990. Thesis (Ph.D.)–Yale University. MR 2638807
- Don Zagier, Quantum modular forms, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 659–675. MR 2757599
- S. Zwegers, Mock theta functions, Ph.D. Thesis, Utrecht, 2002.
Additional Information
- Thomas Creutzig
- Affiliation: Department of Mathematics, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
- MR Author ID: 832147
- ORCID: 0000-0002-7004-6472
- Email: creutzig@ualberta.ca
- Andrew R. Linshaw
- Affiliation: Department of Mathematics, University of Denver, Denver, Colorado 80208
- MR Author ID: 791304
- Email: andrew.linshaw@du.edu
- Received by editor(s): May 21, 2014
- Received by editor(s) in revised form: January 8, 2015
- Published electronically: May 6, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 467-494
- MSC (2010): Primary 13A50, 17B69; Secondary 11F22, 17B65
- DOI: https://doi.org/10.1090/tran6664
- MathSciNet review: 3557781