Non-splat singularity for the one-phase Muskat problem
HTML articles powered by AMS MathViewer
- by Diego Córdoba and Tania Pernas-Castaño PDF
- Trans. Amer. Math. Soc. 369 (2017), 711-754 Request permission
Abstract:
For the water wave equations, the existence of splat singularities has been shown, i.e., the interface self-intersects along an arc in finite time. The aim of this paper is to show the absence of splat singularities for the incompressible fluid dynamics in porous media.References
- Ángel Castro, Diego Córdoba, Charles Fefferman, and Francisco Gancedo, Breakdown of smoothness for the Muskat problem, Arch. Ration. Mech. Anal. 208 (2013), no. 3, 805–909. MR 3048596, DOI 10.1007/s00205-013-0616-x
- Ángel Castro, Diego Córdoba, Charles Fefferman, and Francisco Gancedo, Splash singularities for the one-phase Muskat problem in stable regimes. arXiv:1311.7653v1, 2013.
- Angel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo, and Javier Gómez-Serrano, Finite time singularities for the free boundary incompressible Euler equations, Ann. of Math. (2) 178 (2013), no. 3, 1061–1134. MR 3092476, DOI 10.4007/annals.2013.178.3.6
- Ángel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo, and María López-Fernández, Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves, Ann. of Math. (2) 175 (2012), no. 2, 909–948. MR 2993754, DOI 10.4007/annals.2012.175.2.9
- C. H. Arthur Cheng, Rafael Granero-Belinchón, and Steve Shkoller, Well-posedness of the Muskat problem with ${H}^{2}$ initial data. arXiv:14127737v1, 2014.
- Peter Constantin, Diego Córdoba, Francisco Gancedo, and Robert M. Strain, On the global existence for the Muskat problem, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 1, 201–227. MR 2998834, DOI 10.4171/JEMS/360
- Antonio Córdoba and Diego Córdoba, A pointwise estimate for fractionary derivatives with applications to partial differential equations, Proc. Natl. Acad. Sci. USA 100 (2003), no. 26, 15316–15317. MR 2032097, DOI 10.1073/pnas.2036515100
- Antonio Córdoba, Diego Córdoba, and Francisco Gancedo, Interface evolution: the Hele-Shaw and Muskat problems, Ann. of Math. (2) 173 (2011), no. 1, 477–542. MR 2753607, DOI 10.4007/annals.2011.173.1.10
- Antonio Córdoba, Diego Córdoba, and Francisco Gancedo, Porous media: the Muskat problem in three dimensions, Anal. PDE 6 (2013), no. 2, 447–497. MR 3071395, DOI 10.2140/apde.2013.6.447
- Diego Córdoba and Francisco Gancedo, Contour dynamics of incompressible 3-D fluids in a porous medium with different densities, Comm. Math. Phys. 273 (2007), no. 2, 445–471. MR 2318314, DOI 10.1007/s00220-007-0246-y
- Daniel Coutand and Steve Shkoller, On the finite-time splash and splat singularities for the 3-D free-surface Euler equations, Comm. Math. Phys. 325 (2014), no. 1, 143–183. MR 3147437, DOI 10.1007/s00220-013-1855-2
- Daniel Coutand and Steve Shkoller, On the impossibility of finite-time splash singularities for vortex sheets. arXiv:1407.1479v1, 2014.
- Joachim Escher and Bogdan-Vasile Matioc, On the parabolicity of the Muskat problem: well-posedness, fingering, and stability results, Z. Anal. Anwend. 30 (2011), no. 2, 193–218. MR 2793001, DOI 10.4171/ZAA/1431
- Charles Fefferman, Alexandru D. Ionescu, and Victor Lie, On the absence of “splash” singularities in the case of two-fluids interfaces. arXiv:1312.2917v2, 2013.
- Francisco Gancedo and Robert M. Strain, Absence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem, Proc. Natl. Acad. Sci. USA 111 (2014), no. 2, 635–639. MR 3181769, DOI 10.1073/pnas.1320554111
- Javier Gómez-Serrano and Rafael Granero-Belinchón, On turning waves for the inhomogeneous Muskat problem: a computer-assisted proof, Nonlinearity 27 (2014), no. 6, 1471–1498. MR 3215843, DOI 10.1088/0951-7715/27/6/1471
- Rafael Granero-Belinchón, Global existence for the confined Muskat problem, SIAM J. Math. Anal. 46 (2014), no. 2, 1651–1680. MR 3196945, DOI 10.1137/130912529
- Tosio Kato and Gustavo Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891–907. MR 951744, DOI 10.1002/cpa.3160410704
- Morris Muskat, Two fluid systems in porous media. The encroachment of water into an oil sand, J. Appl. Phys. (5):250–264, 1934.
- Lord Rayleigh, On The Instability Of Jets, Proc. Lond. Math. Soc. 10 (1878/79), 4–13. MR 1576197, DOI 10.1112/plms/s1-10.1.4
- P. G. Saffman and Geoffrey Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Proc. Roy. Soc. London Ser. A 245 (1958), 312–329. (2 plates). MR 97227, DOI 10.1098/rspa.1958.0085
- Michael Siegel, Russel E. Caflisch, and Sam Howison, Global existence, singular solutions, and ill-posedness for the Muskat problem, Comm. Pure Appl. Math. 57 (2004), no. 10, 1374–1411. MR 2070208, DOI 10.1002/cpa.20040
Additional Information
- Diego Córdoba
- Affiliation: Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Cientificas, Nicolás Cabrera, 13-15, 28059 Madrid, Spain
- MR Author ID: 627661
- Email: dcg@icmat.es
- Tania Pernas-Castaño
- Affiliation: Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Cientificas, Nicolás Cabrera, 13-15, 28059 Madrid, Spain
- MR Author ID: 1007506
- Email: tania.pernas@icmat.es
- Received by editor(s): September 2, 2014
- Received by editor(s) in revised form: January 22, 2015
- Published electronically: April 14, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 711-754
- MSC (2010): Primary 35Q35
- DOI: https://doi.org/10.1090/tran6688
- MathSciNet review: 3557791