The nonlinear Schrödinger equation on the half-line
HTML articles powered by AMS MathViewer
- by Athanassios S. Fokas, A. Alexandrou Himonas and Dionyssios Mantzavinos PDF
- Trans. Amer. Math. Soc. 369 (2017), 681-709 Request permission
Abstract:
The initial-boundary value problem (ibvp) for the cubic nonlinear Schrödinger (NLS) equation on the half-line with data in Sobolev spaces is analysed via the formula obtained through the unified transform method and a contraction mapping approach. First, the linear Schrödinger (LS) ibvp with initial and boundary data in Sobolev spaces is solved and the basic space and time estimates of the solution are derived. Then, the forced LS ibvp is solved for data in Sobolev spaces on the half-line $[0, \infty )$ for the spatial variable and on an interval $[0, T]$, $0<T<\infty$, for the temporal variable by decomposing it into a free ibvp and a forced ibvp with zero data, and its solution is estimated appropriately. Furthermore, using these estimates, well-posedness of the NLS ibvp with data $(u(x,0), u(0,t))$ in $H_x^s(0,\infty )\times H_t^{(2s+1)/4}(0,T)$, $s>1/2$, is established via a contraction mapping argument. In addition, this work places Fokas’ unified transform method for evolution equations into the broader Sobolev spaces framework.References
- Jerry L. Bona, S. M. Sun, and Bing-Yu Zhang, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. Amer. Math. Soc. 354 (2002), no. 2, 427–490. MR 1862556, DOI 10.1090/S0002-9947-01-02885-9
- J. L. Bona, S. M. Sun and B.-Y. Zhang, Nonhomogeneous boundary value problems of one-dimensional nonlinear Schrödinger equations. arXiv:1503.00065v1 (2015).
- J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107–156. MR 1209299, DOI 10.1007/BF01896020
- J. Bourgain, Global solutions of nonlinear Schrödinger equations, American Mathematical Society Colloquium Publications, vol. 46, American Mathematical Society, Providence, RI, 1999. MR 1691575, DOI 10.1090/coll/046
- Robert W. Boyd, Nonlinear optics, 3rd ed., Elsevier/Academic Press, Amsterdam, 2008. MR 2475397
- Robert Carroll and Qiyue Bu, Solution of the forced nonlinear Schrödinger (NLS) equation using PDE techniques, Appl. Anal. 41 (1991), no. 1-4, 33–51. MR 1103847, DOI 10.1080/00036819108840015
- Thierry Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 2002047, DOI 10.1090/cln/010
- Thierry Cazenave and Fred B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal. 14 (1990), no. 10, 807–836. MR 1055532, DOI 10.1016/0362-546X(90)90023-A
- A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, Rogue wave observation in a water wave tank, Phys. Rev. Lett. 106 (2011), 204502.
- J. E. Colliander and C. E. Kenig, The generalized Korteweg-de Vries equation on the half line, Comm. Partial Differential Equations 27 (2002), no. 11-12, 2187–2266. MR 1944029, DOI 10.1081/PDE-120016157
- Walter Craig, Thomas Kappeler, and Walter Strauss, Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math. 48 (1995), no. 8, 769–860. MR 1361016, DOI 10.1002/cpa.3160480802
- W. Craig, C. Sulem, and P.-L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity 5 (1992), no. 2, 497–522. MR 1158383
- Bernard Deconinck, Thomas Trogdon, and Vishal Vasan, The method of Fokas for solving linear partial differential equations, SIAM Rev. 56 (2014), no. 1, 159–186. MR 3246302, DOI 10.1137/110821871
- Charles L. Epstein and John Schotland, The bad truth about Laplace’s transform, SIAM Rev. 50 (2008), no. 3, 504–520. MR 2429447, DOI 10.1137/060657273
- A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London Ser. A 453 (1997), no. 1962, 1411–1443. MR 1469927, DOI 10.1098/rspa.1997.0077
- Athanassios S. Fokas, A unified approach to boundary value problems, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 78, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. MR 2451953, DOI 10.1137/1.9780898717068
- Athanasios S. Fokas and A. Alexandrou Himonas, Well-posedness of an integrable generalization of the nonlinear Schrödinger equation on the circle, Lett. Math. Phys. 96 (2011), no. 1-3, 169–189. MR 2788909, DOI 10.1007/s11005-011-0488-7
- A. S. Fokas and A. R. Its, The nonlinear Schrödinger equation on the interval, J. Phys. A 37 (2004), no. 23, 6091–6114. MR 2074625, DOI 10.1088/0305-4470/37/23/009
- A. S. Fokas, A. R. Its, and L.-Y. Sung, The nonlinear Schrödinger equation on the half-line, Nonlinearity 18 (2005), no. 4, 1771–1822. MR 2150354, DOI 10.1088/0951-7715/18/4/019
- A. S. Fokas and E. A. Spence, Synthesis, as opposed to separation, of variables, SIAM Rev. 54 (2012), no. 2, 291–324. MR 2916309, DOI 10.1137/100809647
- A. S. Fokas and L. Y. Sung, Initial-boundary value problems for linear dispersive evolution equations on the half-line. Unpublished.
- C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19 (1967), no. 19, 1095–1097.
- Jean-Michel Ghidaglia and Jean-Claude Saut, Nonelliptic Schrödinger equations, J. Nonlinear Sci. 3 (1993), no. 2, 169–195. MR 1220173, DOI 10.1007/BF02429863
- J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. II. Scattering theory, general case, J. Functional Analysis 32 (1979), no. 1, 33–71. MR 533219, DOI 10.1016/0022-1236(79)90077-6
- L. Grafakos, Personal communication. 12pt
- H. Hasimoto and H. Ono, Nonlinear modulation of gravity waves, J. Phys. Soc. Japan 33 (1972), 805–811.
- Justin Holmer, The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line, Differential Integral Equations 18 (2005), no. 6, 647–668. MR 2136703
- Justin Holmer, The initial-boundary value problem for the Korteweg-de Vries equation, Comm. Partial Differential Equations 31 (2006), no. 7-9, 1151–1190. MR 2254610, DOI 10.1080/03605300600718503
- David Jerison and Carlos E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995), no. 1, 161–219. MR 1331981, DOI 10.1006/jfan.1995.1067
- Tosio Kato, On nonlinear Schrödinger equations. II. $H^s$-solutions and unconditional well-posedness, J. Anal. Math. 67 (1995), 281–306. MR 1383498, DOI 10.1007/BF02787794
- Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), no. 1, 33–69. MR 1101221, DOI 10.1512/iumj.1991.40.40003
- David Lannes, The water waves problem, Mathematical Surveys and Monographs, vol. 188, American Mathematical Society, Providence, RI, 2013. Mathematical analysis and asymptotics. MR 3060183, DOI 10.1090/surv/188
- Felipe Linares and Gustavo Ponce, Introduction to nonlinear dispersive equations, Universitext, Springer, New York, 2009. MR 2492151
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. II, Die Grundlehren der mathematischen Wissenschaften, Band 182, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 0350178
- Alan C. Newell and Jerome V. Moloney, Nonlinear optics, Advanced Topics in the Interdisciplinary Mathematical Sciences, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1992. MR 1163192
- D. H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions, J. Austral. Math. Soc. Ser. B 25 (1983), no. 1, 16–43. MR 702914, DOI 10.1017/S0334270000003891
- E. G. Titchmarsh, Introduction to the theory of Fourier integrals, Clarendon Press, 1937.
- Yoshio Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac. 30 (1987), no. 1, 115–125. MR 915266
- V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Applied Mech. Tech. Phys. 9 (1968), 190–194.
- V. E. Zakharov and S. V. Manakov, On the complete integrability of a nonlinear Schrödinger equation, J. Theor. and Math. Phys. 19 (1974), 551–559.
- V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, 118–134 (Russian, with English summary); English transl., Soviet Physics JETP 34 (1972), no. 1, 62–69. MR 0406174
Additional Information
- Athanassios S. Fokas
- Affiliation: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
- MR Author ID: 67825
- Email: tf227@cam.ac.uk
- A. Alexandrou Himonas
- Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
- MR Author ID: 86060
- Email: himonas.1@nd.edu
- Dionyssios Mantzavinos
- Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
- MR Author ID: 925372
- Email: mantzavinos.1@nd.edu
- Received by editor(s): July 17, 2014
- Received by editor(s) in revised form: January 17, 2015
- Published electronically: March 1, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 681-709
- MSC (2010): Primary 35Q55, 35G16, 35G31
- DOI: https://doi.org/10.1090/tran/6734
- MathSciNet review: 3557790