Single point gradient blow-up on the boundary for a Hamilton-Jacobi equation with $p$-Laplacian diffusion
HTML articles powered by AMS MathViewer
- by Amal Attouchi and Philippe Souplet PDF
- Trans. Amer. Math. Soc. 369 (2017), 935-974 Request permission
Abstract:
We study the initial-boundary value problem for the Hamilton-Jacobi equation with nonlinear diffusion $u_t=\Delta _p u+|\nabla u|^q$ in a two-dimensional domain for $q>p>2$. It is known that the spatial derivative of solutions may become unbounded in finite time while the solutions themselves remain bounded. We show that, for suitably localized and monotone initial data, the gradient blow-up occurs at a single point of the boundary. Such a result was known up to now only in the case of linear diffusion ($p=2$). The analysis in the case $p>2$ is considerably more delicate.References
- José M. Arrieta, Anibal Rodriguez-Bernal, and Philippe Souplet, Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (2004), no. 1, 1–15. MR 2064964
- Amal Attouchi, Well-posedness and gradient blow-up estimate near the boundary for a Hamilton-Jacobi equation with degenerate diffusion, J. Differential Equations 253 (2012), no. 8, 2474–2492. MR 2950459, DOI 10.1016/j.jde.2012.07.002
- Amal Attouchi, Boundedness of global solutions of a $p$-Laplacian evolution equation with a nonlinear gradient term, Asymptot. Anal. 91 (2015), no. 3-4, 233–251. MR 3313457, DOI 10.3233/asy-141263
- Guy Barles, Philippe Laurençot, and Christian Stinner, Convergence to steady states for radially symmetric solutions to a quasilinear degenerate diffusive Hamilton-Jacobi equation, Asymptot. Anal. 67 (2010), no. 3-4, 229–250. MR 2665128
- Jean-Philippe Bartier and Philippe Laurençot, Gradient estimates for a degenerate parabolic equation with gradient absorption and applications, J. Funct. Anal. 254 (2008), no. 3, 851–878. MR 2381164, DOI 10.1016/j.jfa.2007.10.012
- Avner Friedman and Bryce McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), no. 2, 425–447. MR 783924, DOI 10.1512/iumj.1985.34.34025
- Ataru Fujii and Masahito Ohta, Asymptotic behavior of blowup solutions of a parabolic equation with the $p$-Laplacian, Publ. Res. Inst. Math. Sci. 32 (1996), no. 3, 503–515. MR 1409800, DOI 10.2977/prims/1195162854
- Victor A. Galaktionov and Sergey A. Posashkov, Single point blow-up for $N$-dimensional quasilinear equations with gradient diffusion and source, Indiana Univ. Math. J. 40 (1991), no. 3, 1041–1060. MR 1129341, DOI 10.1512/iumj.1991.40.40047
- Yoshikazu Giga and Robert V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989), no. 6, 845–884. MR 1003437, DOI 10.1002/cpa.3160420607
- Jong-Shenq Guo and Bei Hu, Blowup rate estimates for the heat equation with a nonlinear gradient source term, Discrete Contin. Dyn. Syst. 20 (2008), no. 4, 927–937. MR 2379480, DOI 10.3934/dcds.2008.20.927
- M. Kardar, G. Parisi, Y. C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889–892.
- J. Krug and H. Spohn, Universality classes for deterministic surface growth, Phys. Rev. A (3) 38 (1988), no. 8, 4271–4283. MR 966369, DOI 10.1103/PhysRevA.38.4271
- O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968 (Russian). Translated from the Russian by S. Smith. MR 0241822
- Philippe Laurençot, Non-diffusive large time behavior for a degenerate viscous Hamilton-Jacobi equation, Comm. Partial Differential Equations 34 (2009), no. 1-3, 281–304. MR 2512862, DOI 10.1080/03605300902793808
- Philippe Laurençot and Christian Stinner, Convergence to separate variables solutions for a degenerate parabolic equation with gradient source, J. Dynam. Differential Equations 24 (2012), no. 1, 29–49. MR 2890335, DOI 10.1007/s10884-011-9238-x
- Philippe Laurençot and Juan Luis Vázquez, Localized non-diffusive asymptotic patterns for nonlinear parabolic equations with gradient absorption, J. Dynam. Differential Equations 19 (2007), no. 4, 985–1005. MR 2357535, DOI 10.1007/s10884-007-9093-y
- Yuxiang Li and Philippe Souplet, Single-point gradient blow-up on the boundary for diffusive Hamilton-Jacobi equations in planar domains, Comm. Math. Phys. 293 (2010), no. 2, 499–517. MR 2563792, DOI 10.1007/s00220-009-0936-8
- Gary M. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. MR 1465184, DOI 10.1142/3302
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. MR 762825, DOI 10.1007/978-1-4612-5282-5
- Pavol Quittner and Philippe Souplet, Superlinear parabolic problems, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2007. Blow-up, global existence and steady states. MR 2346798
- Alexander A. Samarskii, Victor A. Galaktionov, Sergei P. Kurdyumov, and Alexander P. Mikhailov, Blow-up in quasilinear parabolic equations, De Gruyter Expositions in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 1995. Translated from the 1987 Russian original by Michael Grinfeld and revised by the authors. MR 1330922, DOI 10.1515/9783110889864.535
- James Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal. 43 (1971), 304–318. MR 333220, DOI 10.1007/BF00250468
- Philippe Souplet and Juan Luis Vázquez, Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem, Discrete Contin. Dyn. Syst. 14 (2006), no. 1, 221–234. MR 2170311, DOI 10.3934/dcds.2006.14.221
- Philippe Souplet and Qi S. Zhang, Global solutions of inhomogeneous Hamilton-Jacobi equations, J. Anal. Math. 99 (2006), 355–396. MR 2279557, DOI 10.1007/BF02789452
- Christian Stinner, Convergence to steady states in a viscous Hamilton-Jacobi equation with degenerate diffusion, J. Differential Equations 248 (2010), no. 2, 209–228. MR 2558164, DOI 10.1016/j.jde.2009.09.019
- Zhengce Zhang and Yanyan Li, Boundedness of global solutions for a heat equation with exponential gradient source, Abstr. Appl. Anal. , posted on (2012), Art. ID 398049, 10. MR 2872304, DOI 10.1155/2012/398049
- Zhengce Zhang, Gradient blowup rate for a viscous Hamilton-Jacobi equation with degenerate diffusion, Arch. Math. (Basel) 100 (2013), no. 4, 361–367. MR 3044120, DOI 10.1007/s00013-013-0505-4
- Jun Ning Zhao, Existence and nonexistence of solutions for $u_t=\textrm {div}(|\nabla u|^{p-2}\nabla u)+f(\nabla u, u,x,t)$, J. Math. Anal. Appl. 172 (1993), no. 1, 130–146. MR 1199500, DOI 10.1006/jmaa.1993.1012
Additional Information
- Amal Attouchi
- Affiliation: Laboratoire Analyse, Géométrie et Applications, Université Paris 13, Sorbonne Paris Cité, CNRS (UMR 7539), 93430 Villetaneuse, France
- MR Author ID: 986258
- Email: attouchi@math.cnrs.fr
- Philippe Souplet
- Affiliation: Laboratoire Analyse, Géométrie et Applications, Université Paris 13, Sorbonne Paris Cité, CNRS (UMR 7539), 93430 Villetaneuse, France
- MR Author ID: 314071
- Email: souplet@math.univ-paris13.fr
- Received by editor(s): April 19, 2014
- Received by editor(s) in revised form: January 31, 2015
- Published electronically: March 1, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 935-974
- MSC (2010): Primary 35B40, 35B45, 35K20, 35K92; Secondary 82C24, 35F21
- DOI: https://doi.org/10.1090/tran/6684
- MathSciNet review: 3572260