Order problem for canonical systems and a conjecture of Valent
HTML articles powered by AMS MathViewer
- by R. Romanov PDF
- Trans. Amer. Math. Soc. 369 (2017), 1061-1078 Request permission
Abstract:
We establish a sharp upper estimate for the order of a canonical system in terms of the Hamiltonian. This upper estimate becomes an equality in the case of Krein strings. As an application we prove a conjecture of Valent about the order of a certain class of Jacobi matrices with polynomial coefficients.References
- Louis de Branges, Hilbert spaces of entire functions, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1968. MR 0229011
- Lev A. Sakhnovich, Spectral theory of canonical differential systems. Method of operator identities, Operator Theory: Advances and Applications, vol. 107, Birkhäuser Verlag, Basel, 1999. Translated from the Russian manuscript by E. Melnichenko. MR 1690379, DOI 10.1007/978-3-0348-8713-7
- A. Baranov and H. Woracek, Subspaces of de Branges spaces with prescribed growth, Algebra i Analiz 18 (2006), no. 5, 23–45; English transl., St. Petersburg Math. J. 18 (2007), no. 5, 699–716. MR 2301039, DOI 10.1090/S1061-0022-07-00969-7
- M. Š. Birman and M. Z. Solomjak, Piecewise polynomial approximations of functions of classes $W_{p}{}^{\alpha }$, Mat. Sb. (N.S.) 73 (115) (1967), 331–355 (Russian). MR 0217487
- M. Š. Birman and M. Z. Solomjak, Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory, American Mathematical Society Translations, Series 2, vol. 114, American Mathematical Society, Providence, R.I., 1980. Translated from the Russian by F. A. Cezus. MR 562305
- Michael Kaltenbäck, Henrik Winkler, and Harald Woracek, Strings, dual strings, and related canonical systems, Math. Nachr. 280 (2007), no. 13-14, 1518–1536. MR 2354977, DOI 10.1002/mana.200410562
- V. V. Borzov, The quantitative characteristics of singular measures, Problems of Mathematical Physics, No. 4: Spectral Theory. Wave Processes (Russian), Izdat. Leningrad. Univ., Leningrad, 1970, pp. 42–47. (errata) (Russian). MR 0281860
- M. Lifschetz, On some questions concerning the determinate case of Hamburger’s moment problem, Rec. Math. N. S. [Mat. Sbornik] 6(48) (1939), 293–306. MR 0001386
- Christian Berg and Ryszard Szwarc, On the order of indeterminate moment problems, Adv. Math. 250 (2014), 105–143. MR 3122164, DOI 10.1016/j.aim.2013.09.020
- Ju. M. Berezans′kiĭ, Expansions in eigenfunctions of selfadjoint operators, Translations of Mathematical Monographs, Vol. 17, American Mathematical Society, Providence, R.I., 1968. Translated from the Russian by R. Bolstein, J. M. Danskin, J. Rovnyak and L. Shulman. MR 0222718
- I. S. Kats, Inclusion of the Hamburger power moment problem in the spectral theory of canonical systems, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 262 (1999), no. Issled. po Lineĭn. Oper. i Teor. Funkts. 27, 147–171, 234 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 110 (2002), no. 5, 2991–3004. MR 1734332, DOI 10.1023/A:1015391405016
- Christian Berg and Galliano Valent, The Nevanlinna parametrization for some indeterminate Stieltjes moment problems associated with birth and death processes, Methods Appl. Anal. 1 (1994), no. 2, 169–209. MR 1291292, DOI 10.4310/MAA.1994.v1.n2.a3
- Jacek Gilewicz, Elie Leopold, and Galliano Valent, New Nevanlinna matrices for orthogonal polynomials related to cubic birth and death processes, J. Comput. Appl. Math. 178 (2005), no. 1-2, 235–245. MR 2127882, DOI 10.1016/j.cam.2004.05.025
- Galliano Valent, Indeterminate moment problems and a conjecture on the growth of the entire functions in the Nevanlinna parametrization, Applications and computation of orthogonal polynomials (Oberwolfach, 1998) Internat. Ser. Numer. Math., vol. 131, Birkhäuser, Basel, 1999, pp. 227–237. MR 1722728
- Toshio Uno and Imsik Hong, Some consideration of asymptotic distribution of eigenvalues for the equation $d^{2}u/dx^{2}+\lambda \rho (x)u=0$, Jpn. J. Math. 29 (1959), 152–164. MR 118891, DOI 10.4099/jjm1924.29.0_{1}52
- M. Solomyak and E. Verbitsky, On a spectral problem related to self-similar measures, Bull. London Math. Soc. 27 (1995), no. 3, 242–248. MR 1328700, DOI 10.1112/blms/27.3.242
- Hans Triebel, Fractals and spectra, Monographs in Mathematics, vol. 91, Birkhäuser Verlag, Basel, 1997. Related to Fourier analysis and function spaces. MR 1484417, DOI 10.1007/978-3-0348-0034-1
- I. S. Kats, Integral estimates for the distribution of the spectrum of a string, Sibirsk. Mat. Zh. 27 (1986), no. 2, 62–74, 221 (Russian). MR 890302
- Louis de Branges, Some Hilbert spaces of entire functions. II, Trans. Amer. Math. Soc. 99 (1961), 118–152. MR 133456, DOI 10.1090/S0002-9947-1961-0133456-2
- B. Ya. Levin, Lectures on entire functions, Translations of Mathematical Monographs, vol. 150, American Mathematical Society, Providence, RI, 1996. In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko; Translated from the Russian manuscript by Tkachenko. MR 1400006, DOI 10.1090/mmono/150
- Jonathan Eckhardt and Gerald Teschl, Sturm-Liouville operators with measure-valued coefficients, J. Anal. Math. 120 (2013), 151–224. MR 3095152, DOI 10.1007/s11854-013-0018-x
- I. S. Kats, Thickness of the spectrum of a singular string, Izv. Vyssh. Uchebn. Zaved. Mat. 3 (1990), 23–30 (Russian); English transl., Soviet Math. (Iz. VUZ) 34 (1990), no. 3, 26–34. MR 1075908
Additional Information
- R. Romanov
- Affiliation: Department of Mathematical Physics and Laboratory of Quantum Networks, Faculty of Physics, St. Petersburg State University, 198504, St. Petersburg, Russia
- Email: morovom@gmail.com
- Received by editor(s): September 22, 2014
- Received by editor(s) in revised form: February 9, 2015
- Published electronically: May 3, 2016
- Additional Notes: This work was supported in part by the Austrian Science Fund (FWF) project I 1536–N25, the Russian Foundation for Basic Research, grants 13-01-91002-ANF and 12-01-00215, and by Project SPbSU 11.38.263.2014
- © Copyright 2016 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 369 (2017), 1061-1078
- MSC (2010): Primary 34L15, 47B36
- DOI: https://doi.org/10.1090/tran6686
- MathSciNet review: 3572264